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Office workers’ productivity and well-being are reduced by interruptions, especially if they occur during an inconvenient
moment. Interruptions in phases of high cognitive load are more disruptive than in phases of low cognitive load. Based
on an explorative study, we suppose the presence of social codes that signal office workers’ interruptibility. We propose a
system that utilizes the cognitive load of an office worker to indicate situations suitable for interruptions. The cognitive load
is inferred from office workers’ physiological state measured by a consumer smartwatch. The system adapts an externally
mounted smart device to indicate if the office worker is interruptible. To predict the cognitive load, we trained a classifier
with ten office workers and achieved an accuracy between 66% and 86%. In order to validate the classifier’s accurateness in an
office setting, we performed a verification study with five office workers: We systematically triggered interruptions for each
subject over an interval of half a day of office work. The classifier was able to infer the level of cognitive load for three office
workers. This result supports our hypotheses that inferring cognitive load using a consumer smartwatch is a viable concept.
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1 INTRODUCTION

Interruptions during work are a necessary part of most working environments. In particular, during their daily
work, office workers face a variety of interruptions, such as emails, questions of co-workers, or instant messages.
Humans need on average about twenty-three minutes to resume their task after they got interrupted [23].
Multiple studies reveal that interruptions make humans slower and more error-prone in performing tasks [8, 13].
Other research argues that interruptions occurring at an inopportune moment have a negative effect on the
well-being of humans since they cause stress [2, 24]. To address this problem, social codes were established.
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For instance, a closed office door can indicate that an office worker does not want to get interrupted, whereas
an open door may indicate the opposite. In general, we consider social codes as a human habit expressed in
a physical change of the environment, which are commonly understood to have a defined meaning within a
larger social group such as office employees. However, these changes have to be actively evoked by the office
worker and consequently requires their constant attention—which decreases their effectiveness. This research
aims for a solution that does not require any active management by an office worker to signal their state of
interruptibility. Based on the acceptance of social codes, we intend to automatically reflect office workers’ current
state of interruptibility on a smart device, such as a tablet computer mounted on the front door of an office.

The project PrefMiner [25] tries to reduce the number of notifications by classifying them into important and
unimportant and consequently only presents the important notifications. The system learns from the users’
behavior. It classifies notifications by recording those that are dismissed and those that the user interacts with.
Hereafter, it applies these patterns on future notifications. The drawback of this solution is that it only takes the
importance of the notifications into account, while the timing of the notification is not incorporated. As a result,
a notification could be interrupting the user in a phase in which they are focused on a task.

Research reveals that interruptions during phases of high cognitive load are perceived as more disruptive than
in phases of low cognitive load [13, 16, 20]. The cognitive load can be inferred by applying machine learning
methods on physiological data such as the heart rate variability (HRV) or the galvanic skin response (GSR) [6, 7].

This research strives to improve office workers’ satisfaction in office environments by adapting the timing of
interruptions in response to the office workers’ cognitive load. By scheduling external unexpected interruptions
to phases of low cognitive load they will be less disruptive. External interruptions are caused by changes in the
environment, e.g., a ringing phone [27]. Unexpected interruptions are not scheduled interruptions, e.g., someone
entering the office without an appointment [28]. The cognitive load signature helps to indicate the interruptibility
to co-office workers in order to signal a suitable point in time to interrupt the office worker. This process should
run without any active interaction, be unobtrusive for the office worker, and improve the productivity of the
office worker. We made the following contributions in this paper:

(1) Exploring the presence of social codes to manage interruption. We focused on the effectiveness of social
codes regarding open and closed doors to transfer this code to externally controlled devices.

(2) Detecting the level of cognitive load using consumer wearable devices instead of more expensive and less
common wearables which are typically used for scientific studies.

(3) Designing and evaluating a process to train a system which adapts to the personal traits of different office
workers. The process also includes the evaluation of the system with regard to the accuracy.

(4) Building an interruption management system based on an unobtrusive smartwatch, a light, and an externally
mounted tablet computer.

We outline background information on cognitive load theory in Section 2, while Section 3 provides a literature
review of related research. Section 4 explores the usage of social codes for managing interruptions. In Section 5,
we describe our approach as well as the implementation of the prototype. An evaluation, related results, and
interpretations are presented in Section 6. In Section 7, we summarize future work while Section 8 concludes.

2 COGNITIVE LOAD

We hypothesize that interruptions in workplaces should occur during periods of low cognitive load to improve
complex task performance. The psychological concept of cognitive load refers to the total mental effort required
to perform a task puts on the human working memory [33]. The working memory is limited to 7 + 2 chunks
of information [26]. Cognitive load is the pressure put on human working memory while performing a task.
Cognitive load is a variable trying to quantify the amount of mental demand a task puts on the mental resources.
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Therefore, a mental high workload is reflected in a high cognitive load. Cognitive load is a dynamic property that
changes quickly. There are four different ways to quantify the cognitive load of a human [6]:

o Subjective (self-reported) Measure: Quantifying the cognitive load by asking the subjects to rate their
experienced cognitive load on a rating scale immediately after finishing a task [15].

o Performance Measure: Quantifying the cognitive load by tracking the task performance of the subject.
The underlying assumption is that an overloaded working memory, which is an indicator of high cognitive
load, will result in lower task performance [30].

o Physiological Measure: Quantifying the cognitive load by recording changes in physiological data that
are closely linked to changes in the cognitive load. By continuously measuring these changes, the cognitive
load can be inferred [7].

e Behavioral Measure: Quantifying the cognitive load by recording behavioral patterns, such as eye-gaze
or mouse movements, which correspond to changes in the cognitive load. By detecting changes in these
patterns the cognitive load can be inferred [19].

The amount of cognitive load generated by performing the same task can vary between humans since the
cognitive load is influenced by age, gender, personal traits, and their experience in solving the task [32]. The
physiological and the behavioral measurement-based methods use the reaction of a human to different levels of
cognitive load. Due to the highly personal nature of these reactions, the method needs to be individually adapted
to each subject studied [6].

3 RELATED WORK

In this section we describe research that focuses on the measurement of the cognitive load and the management
of the interruptions depending on it. We structure these research efforts into three categories depending on the
method of measurement of the cognitive load.

3.1 Physiological Measurement Based Systems

Six precedent systems for physiological measurement and response to cognitive loading are important background
for this research project: Chen and Vertegaal developed a system that automatically manages mobile phone
notifications depending on the movement state and the cognitive load of the user [5]. Their system detects the
cognitive load using an electrocardiography (ECG) and an electroencephalography (EEG) sensor. Cinaz et al.
propose a monitoring system to measure the cognitive load of an office worker using an ECG sensor [7]. They
calibrate the system by instructing the participants to perform three different performance tasks. They train
machine learning classifiers using this training data and infer in a second step the workload of an office worker
during a typical office day. Ferreira et al. measure the cognitive load using an EEG, an ECG, and a GSR sensor [9].
They train their machine learning classifier using training data generated by instructing the participants to do
various performance tasks. They attain an accuracy between 64% and 73% using the data sliced into frames of 10
seconds (i.e., the latency for the classification is 10 seconds) for two levels of cognitive load.

Compared to our system, all of the above presented systems share the disadvantage that the user has to wear
cumbersome scientific devices with electrodes attached to their chest and scalp. Our setup, in contrast, solely
relies on a smartwatch worn by users, which we expect to have a higher acceptance in an office environment.

Krause et al. present a system that applies unsupervised machine learning to detect the context-dependent
personal preferences of the user using the state, context, and user interactions with the system [22]. It focuses
on the adaption of a notification setting on a mobile phone. Goyal and Fussell identify suitable moments of
interruptions to reduce their negative effects on the task performance [14]. They utilize a GSR sensor integrated
into a smartwatch worn by the users. Abdelrahman et al. measure the level of cognitive load utilizing the skin
temperature of the nose tip and the forehead of the user [1]. The temperature is determined using an infrared
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camera. They are able to detect changes in the level of cognitive load after 3.8 seconds. These three systems focus
on identifying appropriate moments for interruptions, but not on managing the interruption actively. We add the
functionality to manage the timing of the interruption in our system.

3.2 Behavioral Patterns Based Systems

The following three systems for behavioral measurement and response to cognitive loading are important
background for our research project.

Zuger et al. present a system that uses the behavioral patterns of an office worker’s interaction with their
mouse and keyboard to detect their interruptibility linked to cognitive loading [35]. They conduct a large-scale
study to evaluate the performance of the system. Their system indicates the state of interruptibility using a light
mounted next to the office worker, which changes its hue accordingly. The study participants indicated that
the system improves their productivity and self-motivation and most of them keep on using the system in the
months-long study. This system can only be applied to tasks which include the active usage of the mouse or
keyboard. Instead, our solution is able to also manage interruption for tasks scenarios in which the user is not
actively engaging with a computer, e.g., when watching a lecture video or completing paperwork.

Katidioti et al. propose a system that uses the pupil dilution to detect the point in time to interrupt an
office worker, with an assumption of better times linked to lower cognitive load [19]. The system detects the
pupil dilution using an eye-tracker. Tanaka et. al develop an interruption management system that uses head
movements and the interaction with the computer to identify phases of low cognitive load [34]. The two before
cited interruption management systems require the user to face an eye-tracker or a camera. In case users look
into a different direction, the systems will not be able to work correctly. We overcome this limitation by only
using the data gathered by a smartwatch which delivers constant data independent of the users’ point of view.

3.3 Mixed Measurements

Two precedent systems of combined measurement and response to cognitive loading form important background
in the area of mixed measurements.

Ziger and Fritz present a system that predicts the interruptibility of professional software developers using the
data of wearable physiological sensors [36]. They used the data of an EEG sensor, heart rate sensor, eye-tracking
system, blood volume pulse sensor, and GSR sensor. They were able to identify the software developers’ state of
interruptibility by means of machine learning classifiers with a high accuracy. The system has the disadvantage
compared to our proposed solution that the user has to wear cumbersome electrodes for the EEG sensor.

In their research, Nourbakhsh et al. present a system that classifies the level of cognitive load of a human using
the frequency of their eye blinks and their GSR [29]. The participants performed different performance tasks
to generate physiological data, which was used to train two machine learning classifiers. They achieved a 75%
accuracy for two levels and a 50% for four levels of cognitive load. While this research also requires that the user
faces the eye-tracking device, we overcome the limitation using only a smartwatch.

4 EXPLORING THE SOCIAL CODE OF INTERRUPTIBILITY

We approached our investigations on social codes by applying an explorative study. We intended to learn about the
presence of social codes, i.e., the behavior of subjects, when confronted with an open or closed door. Therefore,
we carefully designed two study scenarios as depicted in Figure 1 to stimulate and prompt social codes.

In Study A, we explore if a closed door implies that an office worker prefers not to get interrupted while an
open door implies they are willing to participate in any kind of interaction. In a second step, as part of Study B,
we want to investigate whether we can transfer the social codes of open and closed doors to an automatically
controlled environment adaption strategy. A system consisting of a smartphone mounted at each door frame is
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Fig. 1. We explored the social codes of interruptibility in office environments with two studies, in each of which ten
participants were asked to interrupt office workers to a find out the room number of a particular member of staff. In Study A,
the participants faced a closed door of Office 1and an open door of Office 2. In Study B, both office doors were closed, yet
equipped with red and green signals displayed on a smartphone mounted at each door frame.

used as the prototype of such an environment adaption. In front of the first office, a smartphone displays the text
Do not disturb on a red background to imply the social code of a closed door. The second office was equipped with
a smartphone that displays the text Welcome on a green background to simulate the social code of an open door.

We randomly selected 20 participants in the corridor of an academic facility. We refrained from recording any
person-related information about them to avoid any privacy concerns. The 20 participants were divided into
two groups of the same size, one subgroup each for Study A and Study B. The study environment consisted of
the corridor that connects two offices—Office 1 and Office 2—located next to each other as shown in Figure 1.
Beside these two offices there are further offices on both sides of the corridor while we explicitly excluded the
offices on the right side of the corridor. This environment was not fully controlled; therefore, each participant
faced a slightly different situation, e.g., people were in the corridor or people entering and leaving offices, when
performing the subsequently described task. Both offices in question created the impression that they were
occupied, which could be inferred from artificial light shining either through the frosted glass window in the
doors in case they were closed or given the fact that the door stood open.

One author of this paper was sitting in Office 2, while another author was conducting the study, i.e., recruiting
and introducing participants. The task required participants to ask the staff sitting in the offices on the left side of
the corridor for the room number of a particular member of staff. We choose this task, because it is a typical
question you would ask an unknown person in an office environment. We guaranteed that they do not know
anybody in the offices nor the person they were asked to look for. The participant starts the study at the beginning
of the corridor which guaranteed both offices within sight. We depicted the start position with a stick figure in
Figure 1. To avoid the bias that the participants choose the closer door (Office 1), we defined this door as the
door associated with the social code for not-interrupting. The study was considered completed if the participant
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either knocks or opens one of the doors or if they are walking further down the corridor. After the participant
completed the study, we consulted them for the following questions which differed depending on the study:
e Study A and Study B: Why did you choose the door of Office I or Office 2?
o Study A and Study B: Why did you not choose the door of Office 1 or Office 2?
e Study B: What meaning do you relate to smartphones with green and red background?
Figure 2 shows which door the study participants choose first to ask for the staff member. In Study A and Study
B, the majority choose the second door.

Study A Study B

First Door
(Closed)

First Door
(Red Indicator)

Other Other
7 Participants
6 Participants Second Door

(Green Indicator)

Second Door
(Open)

Fig. 2. Distribution of the participants which choose either the first or second door in the explorative study in which we
intended to learn about social codes in office environments. One participant of each study chooses an office further down
the corridor, which accounts for the Other category in the pie chart.

In Study A, the majority choose the door of Office 2, which is a signal for the presence of a social code implied
by closed doors. The reason participants provided in Study A for their decision to open the second door was they
interpreted the open door as an indicator that they can interrupt the office worker. Participants who opened the
first door justified their behavior in the fact that the first door was closer, and they wanted to complete the task
both quickly and efficiently. To summarize the results of the Study A, we can assume that an open and closed
door are recognized by most of the participants as an indicator for an office worker interruptibility.

The results of the Study B point out that most of the participants understood that the smartphones introduce
a social code to signal who to interrupt for a request. Of the two participants who entered the first door, the
first participant stated that they did not recognize the smartphone and wanted to complete the task while the
second participant explained they wanted to complete the task and did not care about the smartphones at all.
The participant who just walked pass the two doors reported to be confused by the two smartphones mounted
at the doors and tried to find another way to solve the task, i.e., other than asking office workers of one of the
two offices. To condense the answers of the Study B, most of the participants recognized that the smartphone
with a red background implies that the office worker is not-interruptible while the green background implies the
opposite. Green and red were recognized as the signal colors for interruptible and not-interruptible. The second
finding is that the social code of the open and closed door can be transferred to the smartphones mounted on the
door frame. This finding supports the assumption that the way we adapt the environment to avoid interruption
in inconvenient moments is intuitive to the majority of the participants without any initial explanation.

After elaborating on the results, we enumerate the following threats to validity of the study. They highlight its
explorative character. At the same time, they raise the need for a more detailed and controlled execution of the
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GSR Sensor HR & HRV Sensor
Skin Temperature Sensor

Accelerometer
Gyroscope

Feedback Request
X Rate your Level of

Cognitive Load!

Fig. 3. Overview of the sensors of the Microsoft Band 2 (top). Screenshot of the notification of the feedback request (bottom
left). The possible answers for the feedback request (bottom right).

study. The behavior of the participants is not fully influenced by the open or closed doors nor by the smartphones,
but by a variety of other factors. Further, a person’s principal character traits influence how careful they are about
interrupting other persons. The task we gave the participants is artificial and not typical for interruptions in real
working environments, in which the importance of a task might influence the decision on whom to interrupt.
Furthermore, in an office setting most of the office workers know each other which poses a different attitude and
inhibition threshold for the interruption of their peers. Consequently, the effect of both the mounted smartphone
as well as the open or closed door tend to vary rather than being clearly determinable upfront.

For the introduction of the COLLINS system the users would be briefed, and we assume the users would
understand the meaning of the displayed content of a smartphone. Thereby, the problem of participants’ confusion
about the smartphones that we discovered would be prevented.

5 COLLINS - AN INTERRUPTION MANAGEMENT SYSTEM

We suggest that interruptions in the workplace should be timed to periods of low cognitive load to improve per-
formance at complex tasks. We developed the COLLINS (Cognitive Load Classification to prevent Interruptions)
system that infers the cognitive load of an office worker using their physiological state to adapt their environment.

The goal of this adaption is to minimize interruptions during phases of high cognitive load and postpone
them to phases of low cognitive load. The system measures the physiological state using a Microsoft Band 2
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Fig. 4. The class diagram shows the office worker in the center, which is protected from interruptions during phases of high
cognitive load. The cognitive load is inferred using the physiological data and—depending on it—interruptions are postponed.

smartwatch worn by the office worker. As depicted in the top part of Figure 3, the Microsoft Band 2 provides all
the required sensors. Furthermore, the Microsoft Band 2 is considered to be a consumer smartwatch'.

The smartwatch measures the heart rate, HRV, GSR, skin temperature, and wrist movements. A smartphone
bridges between the Bluetooth connection of the smartwatch and the Wi-Fi of the dedicated server hosting the
application domain. In case of a connection loss between the smartphone and the smartwatch, the smartphone
application tries to reconnect to the smartwatch every 15 second. We do not handle other error, e.g., running out
of battery. The reason for this simple approach for error handling is our implementation serves as a prototype.
Using machine learning techniques on the data provided by the smartwatch, the cognitive load can be classified.
The inferred cognitive load is then mapped to two states of interruptibility: interruptible and not-interruptible. The
state is visually indicated to the co-office workers in form of a light and an externally mounted tablet computer.

1As of today, the future of the Microsoft Band is uncertain: recent reports indicate it is discontinued (http://www.zdnet.com/article/

microsoft-pulls-band-listings-from-its-store-admits-no-band-3- this-year/, accessed June 26, 2017). The Microsoft Band SDK is no longer avail-
able (http://developer.microsoftband.com/bandSDK, accessed June 26, 2017), requiring future version of COLLINS to use other smartwatches.
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5.1 Application Domain

Figure 4 depicts the class diagram used to analyze and describe the application domain of the COLLINS system.
Furthermore, it serves as the foundation to develop the system architecture.

The Office Worker, the human component in the system, performs a Task and is protected from an Interruption
during inopportune points in times. The Physiological Data from the Office Worker unconsciously adapts depending
on the Cognitive Load a task induces. The Physiological State Observer quantifies the changes in the Physiological
Data. The Physiological State Observer implements an subscriber and the Physiological Data implements the
publisher in Observer Pattern [11]. The quantified data is used by the Cognitive Load Detector to infer the Cognitive
Load using a pre-trained Classifier. The inferred Cognitive Load is mapped to a state of Interruptibility. The
Interruption Guard Adaption Strategy adapts the Interruption Guard depending on the Cognitive Load to prevent
Interruption in phases of high cognitive load. We use the Strategy Pattern for Interruption Guard Adaption Strategy
to adapt different Interruption Guard [11]. In this pattern the Cognitive Load is the context, the Building Automation
Client is the client, and the Cognitive Load Detector is the policy.

5.2 Cognitive Load Inference

A multi-step approach is used to infer the cognitive load of an office worker illustrated in Figure 5.

Data Feature Cognitive Load Environment
Prepocessing Generation Inference Adaption

Fig. 5. Block diagram showing the data flow in the COLLINS systems for the inference of the cognitive load.

Firstly, we generate frames of the data stream with a length of 30 seconds. Each frame overlaps 25% with the
previous and 25% with the following one. Secondly, the physiological data is cleaned of artifacts such as wrist
movements, which distort the measured HRV [10]. Therefore, all RR intervals are removed which differ more
than 40% from the average of the frame. We use the same parameter as in [7]. The threshold for the removal of
RR frame is doubled to 40%, since our hardware is less accurate than the one used in [7]. A RR interval is the time
between two consecutive heart beats.

After the data preprocessing, the feature vector is generated with the following time and frequency features:

e Galvanic Skin Response: The average and standard deviation of the time frame.

e Skin Temperature: The average and standard deviation of the time frame.

e Heart Rate: The average and standard deviation of the time frame.

e Heart Rate Variability: The average and standard deviation of the time frame; the root mean square of
the successive difference of the RR intervals (RMSSD) and the percentage of the number of successive RR
intervals varying more than 50 ms and 20 ms from the previous RR interval (pNN50 and pNN20).

The feature vectors are used in the classification process to infer the current cognitive load. The COLLINS
system incorporates several classification algorithms and compares the performance: Support Vector Machine
(SVM) with a radial basis function kernel, Random Forest, and the Naive Bayes Classifier. The scikit-learn library
was used for the classification of the discrete levels of cognitive load [31]. The classification results in a discrete
level of cognitive load.

5.3 Environment Adaption

The inferred level of cognitive load is used to adapt the environment to indicate the state of interruptibility of the
co-office workers as not-interruptible or interruptible (to simplify the interaction of the co-office worker with
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Fig. 6. The COLLINS system indicating that the office worker should not be interrupted.

the system). In Section 4, we showed a system using a smartphone displaying a red or green background is an
effective and intuitive method to indicate the interruptibility. Taking this finding as the foundation, we employed
in the prototype of COLLINS system two different devices to communicate to co-workers: an externally mounted
tablet computer and a light. The tablet computer background color is set to red when a worker should not be
interrupted and to green when they can. A Luxafor? light is also set to red if the office worker should not be
interrupted and to green if they can. This light can be mounted on top of the screen of the computer of the office
worker. The setup of the devices placed in a test work space is shown in Figure 6.

For a closed office environment with only one office worker per room we would use a tablet computer mounted
next to the door of the office. In other cases, an open office environment or a closed office environment with
multiple occupants, a Luxafor mounted on each computer screen would be employed.

Publicly displaying and constantly measuring the current level of interruptibility might raises ethical questions.
An office worker whose state of interruptibility is mostly interruptible might be labeled by their co-workers as
‘lazy’, since this state is linked to a low level of the office worker’s cognitive load. Ziiger et al. do not report on
such correlation in their long-term study with 449 participants [35]. In their study, a system publicly displays the
state of interruptibility of each office worker next to their workplace. Their research allows us the conclusion
that there is no such correlation. The second ethical questions the system rises is that it could be used for the
surveillance and assessment of the employees’ performance. Following the same approach as in Ziiger et al.
research, we solved this question by not centrally collecting and storing the state of the office workers.

Zhttp://www.luxafor.com
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6 EVALUATION

In this section, we evaluate COLLIONS with two consecutive studies: a training study and a verification study. We
further include the results and interpretations of each study.

6.1 Evaluation Approach

As a first step, consent forms were solicited from each participant to ensure the ethical use of the generated data
for evaluation. Then, using a general survey, we wanted to determine how the participants perceive interruptions
during work. The results are described in Section 6.2.

The training study focused on the machine learning classifier for each individual’s physiological reaction to
different levels of cognitive load. We present the outcomes of this study in Section 6.3. The verification study
validated the accuracy of the classification in a normal office setting; in Section 6.4 its findings are described. The
structure of the evaluation is shown in Figure 7.

10 Participants 5 Participants
--—= e
1

v
‘ Consent }—»‘ Survey }—»

Fig. 7. The evaluation was conducted in two parts. First, ten participants were asked to fill in a consent and survey before
participating in the training study. Hereafter, five of them participated in the verification study.

6.2 Survey

Ten participants with an average age of 29.3 (+7.6) were recruited from a pool consisting of faculty staff, Master,
and Ph.D. students. The participants were both male and female. The ten participants provided general information
on how they perceive interruption during their work. The result of each of the questions is depicted in Figure 8.

Interruptions distract me during work. - _
! gt often interrupted during work -_ _

I need time to refocus ona task again after an interruption. -

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%  100%

M strongly disagree mdisagree M neutral agree Mstrongly agree
Fig. 8. The survey’s results of the three questions reflect the way interruptions are perceived by the participants.
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Overall, the responses of the participants can be concluded as follows:

e Interruptions distract me during work: 90% of the participants agree or even strongly agree with this
statement. Therefore, interruptions are a reason for distractions for our group of participants.

o I get often interrupted during work: With this statement only 10% of the participants disagree. Partici-
pants perceive that interruptions during work happen frequently.

e I need time to refocus on a task again after an interruption: 90% of the participants either agree or
strongly agree that they need time to refocus after an interruption as significant.

6.3 Training Study

The training study is used to adapt the system to recognize individual reactions of participants experiencing
different levels of cognitive load when performing a task. The participants performed three different performance
tasks to trigger three different levels of cognitive load (low, medium, and high). Figure 9 depicts the process.

] ] ]
1! 1! 1
3 minutes 8 minute ~ i '| 2 minutes 8 minute ~ i '| 3 minutes 8 minute ~ |
resting H N-Back Test H NASA-TLX H resting H N-Back Test H NASA-TLX H resting H N-Back Test H NASA-TLX ‘:
] ]

Fig. 9. The training study consists of three parts, while each part includes a resting phase, a phase for inducing the cognitive
load, and a NASA-TLX survey for the self-evaluation of the cognitive load.

Before each performance task, a participant passes a resting phase to acquire a baseline as a reference value.
Each resting phase is followed by a workload phase. During these workload phases, the participant performs
different variants of the Dual N-Back Test to induce low, medium, and high levels of cognitive load [17]. The
Brain Workshop® software was selected with the following variations of the Dual N-Back Test

e Task 1: In the Position 1-Back Test, a square appears every three seconds in a three by three grid. The
participant has to indicate if the position of the current square is the same as the one shown before by
pressing the A’ key. This should simulate simple repetitive tasks, which induces a low workload.

o Task 2: In the Arithmetic 1-Back Test, a number between zero and twelve appears every three seconds on
the screen. A math operator (plus, minus, times, divide) is presented via the headphones. The participant
has to apply the operator to the current number and the one presented before and enter the result. The
task represents a medium workload.

e Task 3: The Dual 2-Back Test is a combination of the two tests mentioned before. A number between zero
and twelve is presented in a three by three grid. The participant has to respond if the number appears at
the same position in the grid as two steps before by pressing the A’ key. Furthermore, a math operator is
presented via the headphones, which they have to apply to the current number and the number, which was
shown two steps before and to enter the result. The task represents a high workload, since the participant
has to keep the last two numbers and the last two positions in mind.

After finishing a task, the participant fills in the NASA-TLX questionnaire [15] to state a self-evaluation of the
perceived workload for each task. The results of the NASA-TLX survey indicate that the participants perceive
Task 1 the lowest and Task 3 the highest cognitive load. The difficulty of Task 2 ranks between Task 1 and Task 3.
The results of the NASA-TLX are displayed in Figure 11.

The task performance of the three different Dual N-Back Test, shown in Figure 10, suggests that the difficulty
of the tasks is perceived in the same order as designed. Task performance is defined as the percentage of tasks
which are correctly solved. The hypotheses that Task 1 is the easiest, Task 3 is the most difficult, and Task 2 is
between the two is supported by the results.

3http://brainworkshop.sourceforge.net/
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Fig. 10. Percentage of wrong answers of the three levels of the N-Back Test.
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Fig. 11. Result of the NASA-TLX survey for the three levels of the N-Back Test for the self-reported level of cognitive load.

Using the data from the training study, different machine learning classifiers were trained to evaluate their
accuracy for inferring the correct level of cognitive load taking the physiological data into account. In Figure 12,
the accuracy for the five-fold cross-validation of trained three machine learning classifiers for each of the
participants with four classes are displayed. The four classes are the four levels of cognitive load.

Figure 13 reveals the accuracy of the classification for two classes of cognitive load merging the resting and
low level as one and medium and high as the other. The Random Forest algorithm has the highest accuracy with
one exception for the four cognitive loads and the highest accuracy on average for the consolidation into two
classes of cognitive loading.

For a general classifier, the model was trained with the leave-one-subject-out method. The classifier is trained
using all data except for one subject, applied in succession to the ten participants. For the ten-fold cross-validation,
the accuracy for SVM was 35.5 + 0.3%, for Random Forest was 31.9% =+ 0.5%, and for Naive Bayes 35.5% + 0.4%.
For the two consolidated classes of cognitive loading, the same method of ten-fold cross-validation revealed an
accuracy for SVM of 53.1% =+ 0.3%, for Random Forest of 53.1% * 0.3%, and for Naive Bayes 53.1% + 0.3%.
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Fig. 12. Classification accuracy for four classes using the different classifiers for the participants.
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Fig. 13. Classification accuracy for two classes using the different classifiers for the participants.

6.4 Verification Study

The goal of the verification study is to validate the classifier trained with the data from the training study and to
determine the right threshold in cognitive load for the system to decide to change the state of an office worker
from interruptible to not-interruptible and vice versa. In addition to the cognitive load of an office worker derived
from their physiological state during a typical office day, direct feedback is added.

If a certain level of physiologically recorded cognitive load was ongoing for a long-time period, the office
worker is interrupted by a systematically triggered notification to ask them to rate the current cognitive load on
their smartwatch at three levels: low, medium, or high.

The participants are working on their regular office tasks while the system is continuously inferring their
cognitive load. In case the system detects a sufficiently high level of cognitive load, the participant gets interrupted
by a vibration alert of the smartwatch. The smartwatch displays a dialog to ask the participant for feedback about
the currently perceived level of cognitive load. Both the notification and the answer options displayed to the
participant are shown in the bottom part of Figure 3.

A multi-step approach was used to determine if the detected level of cognitive load is long enough or high
enough for the individual input. To determine if the pre-trained classifier is accurate, interruptions are triggered
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when an office worker is in a phase of high cognitive load for longer periods. This strategy includes a potential
uncertainty: If the classifier is inaccurate or the office worker never reaches a high level of cognitive load, the
system might never infer a high level of cognitive load. To avoid this gap, the required level of cognitive load or
the time is lowered after some time has elapsed, following the five steps as shown in Table 1.

We define as the level of cognitive load of a time frame the most commonly inferred level in case we do not
infer the same level for all segments of the time frame.

Table 1. Trigger levels for the verification study. After the time frame stated in the first column, the required level of inferred
cognitive load is lowered in case no high enough level was inferred during the time frame. The observed time frame is the
duration considered for taking a decision.

Time after level is lowered in Length of observed time frame in | Minimum level of cognitive load
minutes minutes
30 4 high
5 2 high
5 4 medium
5 2 medium
- 1 low

Five participants from the initial pool of ten subjects in the training study were observed for four hours, the
time defined to send a maximum of ten interruptions. Interruptions were not sent when they were walking,
returned to their desk less than five minutes ago, or if they received an interruption in the last twenty minutes.
These decisions were made to improve the user-friendliness of the system during the verification study.

Figure 14 shows the levels of inferred cognitive load from physiological data of each participant. For most
participants, almost all time segments were classified into one or two levels. The expected distribution of levels
of cognitive load, from the lowest level of Resting to the highest level High Load, did not occur.

Distribution of the Inferred Cognitive Load

100
o 75
(o))
£ Resting
§ 50 Low Load
S Medium Load
25 High Load
0—p1 P2 P3 P4 P5
Participant

Fig. 14. Distribution of inferred cognitive load in the verification study for the participants.

Figure 15 shows the distribution of the self-reported evaluations of the cognitive load, when the same subjects
were interrupted for feedback. For participants P1, P4, and P5, there is a correlation of inferred and self-reported
high cognitive loading. For P2, however, the inferred high cognitive load did not match the participant’s indication
of a low level of cognitive load. Participant P3 answers the feedback with all the three possible response types,
even though their level of cognitive load is always inferred with the highest level.
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Distribution of the Self-Reported Cognitive Load
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Fig. 15. Distribution of the feedback of the subjective self-reported measurement of the level of cognitive load.

6.5 Interpretations on Cognitive Load

Given the results of the studies described, the accuracy in the classification of the level of cognitive load for the
training study is high. A five-fold cross-validation of the individual classifier for each participant has an accuracy
between 66% and 86%. This is comparable accuracy to similar research [29] in the classification of the level of
cognitive load. We achieve an accuracy for the general classifier between 31% and 35% compared to an accuracy
between 35% and 40% using a GSR sensor [29]. We use the same machine learning algorithm Naive Bayes and
SVM. The low accuracy of the consumer wearable used in our research could explain the lower accuracy in
classification of the cognitive load. It offers the advantage that it is cheaper and more convenient to wear.

The individual perception of the different tasks’ induced level of cognitive load matches the way we designed
them. The task performance of the participants and their rating of the task on the NASA-TLX survey supports the
hypothesis that Task 1 is the easiest, Task 3 the most difficult one, and Task’s 2 difficulty is between both of the
other tasks. The survey only considers the scores of the tasks for each participant relative to each other and can
not compare the scores of the different participants, since the perception of cognitive load is highly individual.

In the verification study, a lower accuracy in the classification of the level of cognitive load is achieved with
two participants not classified correctly. The physiological reaction to different levels of cognitive load, however,
is highly personal. The accuracy of a general classifier trained with the data from all the participants shows a
lower accuracy than the personalized classifiers. This is an indicator that changes in the physiological state due to
changes in the level of cognitive load are highly personal and we need to train a classifier for each office worker.

A second interpretation is that the participant perceived the levels of cognitive load differently compared to the
training study. The mapping between the self-reported evaluation level and the inferred level of cognitive load is
shifted. For instance, a low level of classified cognitive load could match a self-reported high level of cognitive
load for certain participants. For some participants, the tipping point between interruptible and not-interruptible
may be set between the resting level and the low classified level of cognitive load rather than between low and
high. This could explain the lower accuracy in classification of the level of cognitive load in the verification study.

6.6 Threats to Validity
The threats to validity of the results and interpretations include:

6.6.1 Correlation between Physiological State and the Cognitive Load. Even though previous research shows
that there is a correlation between the physiological measurements and the cognitive load, these measurements

are also influenced by other factors. Stress influences the HRV [21], GSR, and the heart rate [18]. Furthermore,
there are other factors we cannot control during the evaluation.
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Changing health conditions, such as the flu, can alter the skin temperature and the GSR; similar alterations
can be observed by a change in the room temperature. We performed the evaluation during winter which is why
these conditions applied. Furthermore, the movement of an office worker influences their physiological state.

6.6.2 Accuracy of the Measurement. The Microsoft Band 2 is a consumer product and therefore not made to
have the accuracy of a scientific device. Nevertheless, research shows that consumer wearables (Microsoft Band 2,
Fitbit Surge, Apple Watch) are reliable for measuring the heart rate in resting condition (sitting) [3].

6.6.3 Dual N-Back Test as Benchmark. In the scientific context, the N-Back Test is used to simulate different
levels of cognitive load [7]. However, one question remains: how comparable are these tasks to office work tasks
regarding the effect on cognitive load? By using the underlying assumption of our system that interruptions are
more disturbing in phases of high cognitive load, it is sufficient that the N-Back Test generates similar levels of
cognitive load to office work.

6.6.4 Biased Feedback of the Participants. The participants are interrupted to rate their level of cognitive load.
People can have a general bias in their answers. They could tend to lean towards two directions: either they
always consider to be in a phase of high cognitive load or the opposite depending on their understanding of the
nature of their work. Furthermore, the question always depends on the understanding of the office worker’s
concept of cognitive load. We do not explain the concept of cognitive load in detail to the participants to prevent
to bias them by any explanation. Therefore, they do not have a scale to reference the three answer options to.

6.6.5 Low Number of Participants. The data set we generate is rather small. The training study has only ten
participants and the verification study only five. Small data sets tend to have the problem of over-fitting [4].
Furthermore, the composition of them can have an influence on the results: all the participants have a background
in academia and the majority is male.

6.6.6 Design of Experimental Setup. The setup of the studies can have an influence on the results. The order of
the training study and the way we interrupt people in the verification study is defined and not alternated during
the study. However, we shuffle the order of the different Dual N-Back Tests to avoid training effects of the task.

7 FUTURE WORK

In this section, we present an additional study that should be part of our evaluation to test the system in real
world environment Furthermore, we describe future extension for the COLLINS system.

7.1 In the Wild Study

With the results of the field study as a foundation, the usability of the COLLINS system should be tested ’in the
wild’. This would be a long-term field study in an office environment, in order to quantify the improvements
the COLLINS system offers for the productivity and well-being of the office workers as a result of reduced
interruptions at inconvenient times. Beside this factor on well-being, we also want to take into consideration if
the changes in the hue of light and the knowledge that the office worker is protected from unwanted interruption
effect their well-being. This factor could have further effects on the attention span of an office worker.

The study could be implemented by the following scenario: An office worker starts their day by putting on
their smartwatch and starting the COLLINS system, which was trained to their personal traits in a training study.
The office worker takes care of their typical tasks in the office, while the system is constantly measuring their
physiological state. Using this data, the cognitive load is inferred. The cognitive load is mapped to a state of
interruptibility. Depending on this state the hue of the smart light mounted on the screen of the office worker is
either set to green if they are interruptible or to red if not. The office co-worker knows if the office worker is
ready for an interruption or not. The new social code in the office is that a red light implies that the office worker
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is not-interruptible. The COLLINS system provides the current level of interruptibility in form of an Application
Programming Interface (API) to other applications. Consequently, the COLLINS system sets the office worker’s
status in their instant messaging and email client to Do not disturb in order to avoid interruptions of emails
and instant messages using COLLINS’ API. Consequently, interruptions of the office worker are rescheduled to
phases of low cognitive load and are less disruptive. The office workers productivity and satisfaction with time
management soar.

The classifier will be continuously adjusted given the feedback of the office worker to improve the accuracy
of the classification over time. To quantify the value, the office worker provides feedback on their perception
of how well the COLLINS system infers their state of interruptibility. Whenever possible, the improvements in
productivity and satisfaction of the worker office by using the COLLINS system will be captured.

7.2 System Extensions

Besides the in the wild study, there are possible extensions to the COLLINS system for consideration: A first
step is to apply the paradigm of edge computing to the system [12]. This approach in the development of the
system would move all the functionality encapsulated in the server to the smartphone. The functionalities are
the cognitive load inference and the adaption of the environment. The paradigm suggests moving the processing
of the data away from a central authority back to the edges of the network where the data is generated. The
source of the data should include also the functionality for analytic and knowledge generation.

The second extension is to test the system with different kinds of smartwatches. There is the Simband*
developed by Samsung, which offers an outlook into future developments in the area of wearable computing.
Beside the accelerometer, gyroscope, photoplethysmogram (PPG), GSR sensor, and the skin temperature sensor
the Microsoft Band 2 is already equipped with, the Simband has additionally an ECG sensor. The ECG combined
with the multiple PPG sensors offers a more accurate measurement of the HRV as well as a measurement of
the blood pressure. The test with different smartwatches would allow testing the result for reproducibility.
Furthermore, it would allow for evaluating the influence of different kinds of sensors and more accurate sensors
on the accuracy of the results.

Beside the two before mentioned extension, the third extension is the automation of the training of the system.
We want to adapt the COLLINS system to multiple users quickly and without an expert performing the calibration.
The approach would be to personalize a general classifier to the individual reactions of a user to cognitive load
during the usage of the system. Therefore, the system would ask the user occasionally to rate their level of
cognitive load to generate data points of verified levels of cognitive load. Taking these self-evaluated levels into
account the classifier could get adjusted during time thus the general becomes an individual classifier.

8 CONCLUSION

The COLLINS system manages disruption for an office worker by scheduling interruptions to times of low
cognitive load. The level of cognitive load, which implies a state of interruptibility, is inferred using individual
physiological data from a consumer smartwatch and a pre-trained machine learning classifier. To manage
interruptions the current level of interruptibility is indicated to co-workers using lights and messages, which
show the current state of interruptibility of the office worker. As a result, interruptions can be postponed to a
point in time when the office worker is at a level of low cognitive load and interruptions are less disruptive. We
evaluated the effectiveness and intuitiveness of social codes of the open and closed door and of smartphones
mounted on the door frame for interruption management. The results suggest most participants understood our
proposed social codes.

*https://www.simband.io/
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The COLLINS system has a high accuracy for classification of the level of cognitive load using consumer
wearable, between 66% and 86% for a five-fold cross-validation with the individually trained classifier. For the
general classifier, a lower accuracy was achieved between 32% and 36% for a ten-fold cross-validation. The level
of consensus between self-reported and the inferred level of cognitive load in the verification study had a lower
accuracy than in the training study indicating that classification of cognitive loading is highly personal.

Taking these findings as the foundation, we found the following interpretations: A classifier to infer the level of
cognitive load based on physiological data for each office worker must be individually trained with classification
input from that office worker. Otherwise, the accuracy of the classifier is too low. Also, the perception of cognitive
load is highly personal as the findings of the verification study indicate. This implies that the scales of cognitive
load need to get adapted to each office worker individually.
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