
FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatik

Development of Manual
Assessment for Programming
Exercises in the Orion Plugin

Martin Dunker

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatik

Development of Manual Assessment for
Programming Exercises in the Orion Plugin

Entwicklung manueller Bewertung für
Programmieraufgaben im Orion-Plugin

Author: Martin Dunker

Supervisor: Prof. Dr. Bernd Brügge

Advisor: Dr. Stephan Krusche

Date: September 15, 2021

I confirm that this bachelor’s thesis is my own work and I have documented
all sources and material used.

Munich, September 15, 2021 Martin Dunker

Abstract

Artemis is a learning platform used to conduct programming courses with
programming exercises. Students submit their code and the system automa-
tically runs tests on it. Nonetheless, manual assessment is still necessary
to ensure fair grading. Reviewers are currently assessing the code using
Artemis’s online code editor. While this code editor can show the code,
advanced functionality like code completion or debugging is missing. If re-
viewers wish to execute the students’ code, they need to manually download
it into their IDE, causing a media disruption.

The same problem is already solved for students with the Orion plugin
for Artemis, which integrates Artemis into the IntelliJ IDE, automating the
download and import of programming exercises. In this thesis, we extend the
plugin to support the manual assessment. The plugin should enable reviewers
to automatically download the students’ code, making available all features
of the IDE. Reviewers can create assessment comments with Orion, enabling
them to perform the assessment without leaving the IDE.

Zusammenfassung

Artemis ist eine Lernplatform, mit der Programmierkurse und Program-
mieraufgaben abgehalten werden. Studenten geben ihren Code ab und das
System führt automatisch Tests darauf aus. Nichtsdestotrotz ist eine manu-
elle Korrektur erforderlich, um eine faire Bewertung zu gewährleisten. Kor-
rigierende bewerten derzeit mittels Artemis’ Online-Code-Editor, der den
Code zwar anzeigen kann, dem aber erweiterte Funktionen wie Autover-
vollständigung oder Debugging fehlen. Wenn Korrigierende den Code der
Studenten ausführen wollen, müssen sie ihn manuell in ihre IDE herunterla-
den, was einen Medienbruch verursacht.

Das gleiche Problem ist für Studenten durch das Orion-Plugin für Artemis
gelöst, das Artemis in IntelliJ integriert und dabei den Download und Import
von Programmieraufgaben automatisiert. In dieser Arbeit erweitern wir das
Plugin, damit es auch die manuelle Korrektur unterstützt. Korrigierende sol-
len mit dem Plugin automatisch den Studentencode herunterladen können,
damit alle IDE-Funktionen für ihn verfügbar werden. Sie können Korrektur-
kommentare in der IDE erzeugen, sodass die Korrektur durchgeführt werden
kann, ohne die IDE zu verlassen.

Contents

1 Introduction 2

1.1 Problem . 3

1.2 Motivation . 3

1.3 Objectives . 4

1.4 Outline . 4

2 Related Work 6

3 Requirements Analysis 8

3.1 Current System . 8

3.1.1 Artemis’s Programming Exercise Workflow 9

3.1.2 Artemis Manual Assessment Workflow 11

3.1.3 Orion . 13

3.2 Proposed System . 15

3.2.1 Functional Requirements 15

3.2.2 Nonfunctional Requirements 16

3.3 System Models . 18

3.3.1 Scenarios . 19

3.3.2 Use Case Model . 20

3.3.3 Analysis Object Model 22

3.3.4 Dynamic Model . 24

3.3.5 User Interface . 26

4 System Design 29

4.1 Overview . 29

4.2 Design Goals . 30

4.3 Subsystem Decomposition . 32

4.3.1 Client Decomposition 32

4.3.2 Orion Decomposition 33

4.4 Hardware/Software Mapping 34

ii

5 Object Design 36
5.1 Decoupling Orion from Artemis 36

5.1.1 Overview . 36
5.1.2 Current Approach . 37
5.1.3 Refactored System . 38

5.2 Preventing Invalid States . 40

6 Summary 42
6.1 Status . 42
6.2 Conclusion . 44
6.3 Future Work . 45

A Statistics of the TUM Department of Informatics 47

iii

API Application Programmer Interface

Artemis Automatic Assessment Management System for Interactive Learn-
ing

CIS Continuous Integration System

GUI Graphical User Interface

IaaS Infrastructure-as-a-Service

IDE Integrated Development Environment

JCEF Java Chromium Embedded Framework

UI User Interface

UML Unified Modeling Language

URL Uniform Resource Locator

VCS Version Control System

SDK Software Development Kit

SGI Structured Grading Instruction

TUM Technical University of Munich

1

Chapter 1

Introduction

In order to effectively teach increasing numbers of students1, the Depart-
ment of Informatics at the Technical University of Munich (TUM) devel-
oped the Automatic Assessment Management System for Interactive Learn-
ing (Artemis) to provide a capable, scalable platform to conduct large courses
[KS18]. One of the various available exercise types on the platform are pro-
gramming exercises. A Version Control System (VCS) like Git2 supplies
these exercises and allows students to download a template and upload their
solutions. Uploads are automatically built and tested with predefined tests
using a Continuous Integration System (CIS), providing immediate feedback
to the students. With this feedback, students can interactively improve their
solution until they are satisfied with the automatic test result.

While solving exercises, students need to switch between Artemis’s client
application in their browser to view the problem statement, their Integrated
Development Environment (IDE) to write code, their VCS client to upload
the code, and back to the browser to view the results. The Orion plugin3

for IntelliJ4 improves this process by integrating the Artemis client into a
browser inside the IDE, using IntelliJ’s Git plugin to clone and push the
code, and providing the build results directly inside the IDE [Ung20]. This
enables students to solve programming exercises without leaving the IDE at
all.

1 See Appendix A
2 https://git-scm.com/
3 https://github.com/ls1intum/Orion
4 https://www.jetbrains.com/idea

2

https://git-scm.com/
https://github.com/ls1intum/Orion
https://www.jetbrains.com/idea

1.1. PROBLEM

1.1 Problem

In addition to purely automatic assessment via tests, manual assessment
of programming exercises is required. This is due to the creative nature of
programming, which leads to many possible solutions submitted by students,
making it nearly impossible to create tests that are able to precisely assess
all of them. For tests based on the output of a program, only small typos
can lead to many test failures and reduce the score disproportionately [IS15,
chapter 1]. Conversely, some properties, like the efficient implementation
of an algorithm or the correct usage of language features, are difficult to
determine automatically [ZKF11, chapter 1], with a faulty solution still giving
the correct result. Additionally, some edge cases, like code that does not
compile or terminate, cannot be handled by automatic tests [IS15, chapter 1].
All of these cases require manual assessment. The ability for reviewers to
give qualitative feedback is recommended for automatic assessment systems
[Pie13, chapter 6].

In Artemis, reviewers assess the code manually using an integrated code
editor [Mon17]. The editor enables the reviewers to browse and view the
code and to leave assessment comments; further details are described in Sec-
tion 3.1. While examining the code is sufficient for smaller exercises, larger
exercises oftentimes require the reviewers to edit, execute, and debug the code
to fully understand and assess it. Such execution is currently not directly
supported by Artemis.

If reviewers still wish to run the students’ code, they first need to select
to download the repository in Artemis and then clone it using their VCS
client. Then they need to configure the repository by renaming it correctly
and moving it to the right directory within the test repository, which they
also need to clone once per exercise. After the configuration, they can open
the code in their IDE and edit, execute, and debug it there, using the full
support of the IDE. To add the resulting assessment comments, however,
they need to return to Artemis’s web editor.

1.2 Motivation

The described steps to run the students’ code require up to four different
programs and thereby cause a media disruption. Especially the steps required
to download and configure the submissions are purely mechanical, repetitive,
and could be automated. The time and concentration needed to perform
them could better be spent on the actual assessment. At TUM, this is
worsened due to the number of students rising disproportionately faster than

3

CHAPTER 1. INTRODUCTION

the number of research assistants, reducing the available working time per
student5.

Additionally, the required effort discourages reviewers from running the
code locally. For partially correct solutions, reviewers then revert to a purely
manual assessment through examining the code, which can lead to inconsis-
tent and insufficient feedback [BBL16, chapter 1] and yields the problem of
reviewers being likely more prone to overlooking edge cases [EKN+11, p. T3J-
4]. If, for example, a submission does not compile due to a minor error,
reviewers currently must decide to either omit the automatic feedback and
assess manually, sacrificing quality, or to perform the required steps to down-
load the submission, fix the error locally, and then run the tests, sacrificing
time. It is, however, preferable to not have to choose, enabling the reviewers
to edit and retest the submissions without additional effort.

1.3 Objectives

The aim of this thesis is to remove the media disruption and additional ef-
fort described in Section 1.1 by integrating manual assessment into Orion.
Reviewers should be able to perform the assessment of a programming exer-
cise entirely inside IntelliJ without leaving the IDE. To achieve this, Orion
needs to automate the download and configuration of relevant repositories.
After downloading, the code should be available to all features of the IDE
like editing, code completion, or debugging, as well as the ability to rerun
the automatic tests.

Reviewers should also be able to perform the manual assessment similar
to the current process in Artemis. They need to be able to view the prob-
lem statement, current result, and assessment instructions. Additionally,
Orion must display assessment comments and enable the users to add new
comments, edit existing comments, and delete comments. Other features of
Artemis’s assessment workflow, like highlighting the students’ changes and
enabling Structured Grading Instructions (SGIs), should also be supported.

1.4 Outline

This thesis follows the major software engineering development activities as
described by Brügge and Dutoit [BD09, p. 14].

Chapter 2 – Related Work describes IntelliJ’s GitHub plugin with simi-
lar functionality.

5 See Appendix A

4

1.4. OUTLINE

Chapter 3 – Requirements Analysis explains how manual assessment is
performed in the current system, defines the precise requirements for
the assessment in Orion, and analyzes these requirements using system
models.

Chapter 4 – System Design shows the architecture of the proposed sys-
tem by presenting system models of Artemis’s client and the Orion
plugin as well as their deployment.

Chapter 5 – Object Design details how the design goals of the system
have been implemented on code level.

Chapter 6 – Summary presents which requirements have been met and
summarizes the conclusion of the thesis.

5

Chapter 2

Related Work

Similar to Artemis’s assessment process, GitHub1 also features comments on
code lines while reviewing so-called pull requests. If a developer wants to add
any changes to a repository, they usually need to create a pull request, which
suggests to merge these changes into the project. Other developers can then
view and discuss the changes, leaving both general comments and comments
referring to a specific line of code. After a sufficient number of developers
has approved the pull request, a project maintainer can merge the changes
into the repository.

For better integration, IntelliJ provides a GitHub plugin2, which, among
other things, allows to view and comment on pull requests within the IDE.
Upon selecting a specific pull request, the plugin provides an overview as
shown in Figure 2.1. On the left side it shows a list of all changed files,
while the main editor contains the description of the request, similar to what
the web client shows. When selecting a changed file, a separate editor is
opened (see Figure 2.2). This editor shows the code of the file and highlights
the changes. Reviewers can then add new comments by clicking the “plus”
button on the left gutter of the editor (1) and add text to it (2). Comments
may also have replies (3). Each comment also has buttons to edit and delete
them (4).

These comments are already close to the desired functionality in Orion.
While the code cannot be directly reused since IntelliJ plugins cannot access
classes from other plugins but only from the base platform, its source code
is publicly available3 and studying it provides valuable insights into how the
underlying library needs to be used.

1 https://github.com
2 https://www.jetbrains.com/help/idea/github.html
3 https://github.com/JetBrains/intellij-community/tree/master/plugins/gith

ub/src/org/jetbrains/plugins/github

6

https://github.com
https://www.jetbrains.com/help/idea/github.html
https://github.com/JetBrains/intellij-community/tree/master/plugins/github/src/org/jetbrains/plugins/github
https://github.com/JetBrains/intellij-community/tree/master/plugins/github/src/org/jetbrains/plugins/github

Figure 2.1: Screenshot of the pull request overview of the GitHub plugin, font
size enlarged

1

2

34

Figure 2.2: Screenshot of the review editor of the GitHub plugin, font size en-
larged

7

Chapter 3

Requirements Analysis

As described in Section 1.3, this thesis aims to improve the manual assess-
ment in Artemis by integrating it into the Orion plugin and enabling re-
viewers to edit and execute the students’ code without further configuration.
In this chapter we discuss the proposed system from a user’s point of view,
following the Requirements Analysis Document Template of Brügge and Du-
toit [BD09, p. 194]. We first explain the features of the current system that
are relevant for this thesis in Section 3.1, then define the requirements for the
proposed system in Section 3.2, and finally analyze the requirements using
various models in Section 3.3.

3.1 Current System

In this section we describe features of Artemis and Orion which are relevant
for this thesis. We show how programming exercises are generally performed
in Section 3.1.1, how the assessment works in detail in Section 3.1.2, and how
Orion currently interacts with Artemis in Section 3.1.3.

Artemis is used to conduct programming courses, therefore all non-admi-
nistrative features are organized in courses. A course consists of exercises,
lectures, and exams. There are multiple types of exercises, e.g. text exercises,
modeling exercises, quiz exercises, and programming exercises. This thesis
focuses only on the latter type. Users can interact with courses in one of the
following four roles:

• Students participate in exercises and exams. They can view the prob-
lem statement, submit their solution, receive a score, and receive a
grade at the end of the course.

8

3.1. CURRENT SYSTEM

• Tutors review student code. They can access the assessment dash-
board, view the example solutions, tests and assessment instructions of
exercises, and create manual results for submissions.

• Instructors have every permission in the course. They can create and
delete exercises, lectures and exams, override any assessment, and view
every result.

• Editors are privileged tutors who help creating and maintaining exer-
cises, but do not need full instructor access. They can create and edit
exercises but not delete them, nor are they able to view all student
results [GSS21, chapter 3]. The role has no impact on the assessment
process, therefore we will not distinguish between instructors and edi-
tors in this thesis.

While the assessment is performed by tutors in most courses, some courses
are managed only by instructors with the assessment also performed by the
instructors. We will refer to the user performing the assessment as reviewer.
Reviewers are either instructors, editors, or tutors.

3.1.1 Artemis’s Programming Exercise Workflow

The conduction of a programming exercise with manual assessment follows
a general workflow, which is shown as a Unified Modeling Language (UML)
activity diagram [BRJ05, chapter 19] in Figure 3.1. Initially, a course instruc-
tor needs to set up the exercise. This includes writing a problem statement
and assessment instructions as well as setting various settings, e.g. the name,
start date, due date, and assessment due date of the exercise. Artemis then
automatically creates three repositories on the VCS server: template, solu-
tion, and test. The template repository contains the code any student will
receive at the start of their exercise, the solution repository contains an ex-
ample solution, and the test repository contains automatic tests that will
provide immediate feedback to the students. Artemis also configures build
plans on the CIS server that will automatically test template and solution.
The instructor can then clone these repositories and commit their code.

After the start date has passed, the exercise becomes visible for the stu-
dents. Students can choose to start the exercise. Artemis then creates a
participation for the student by setting up a personal repository containing
a copy of the template repository as well as a build plan to test the student’s
code. Students solve the exercise by either editing their code in the browser
using Artemis’s integrated code editor [Mon17] or by cloning their repository,
programming locally, and committing their changes. Whenever changes are

9

CHAPTER 3. REQUIREMENTS ANALYSIS

Instructor Reviewer System (Artemis) Student

Set up Exercise Exercise

Start Exercise

Participation

Solve Exercise

Submission

Run Automatic Tests

Automatic Result View Result

Done?
no

Assess Submission

Complaint Response

Assessment
Fair?

yes

Complain/
Request Feedback

Complaint/
Feedback Request

Evaluate Complaint/
Feedback Request

View Result

Manual Result View Result

View All Results

no

yes

Figure 3.1: Current System: Activity Diagram showing the general program-
ming exercise workflow with manual assessment enabled

10

3.1. CURRENT SYSTEM

submitted, Artemis creates a new submission and triggers the build plan to
run the automated tests for the submitted code. This generates an automatic
result which is shown to the student. The student can then choose to further
alter the code and resubmit until they are done with their participation or
the due date has passed. Each submission receives a new automated result.

Reviewers start assessing the submission after the due date has passed.
They review the student’s latest submission and its automated result based
on the assessment instructions defined by the instructor and add their own
feedback comments, adding or deducting points. This improved feedback is
stored as a new manual result. After the assessment due date, the manual
result is presented to the student. The student is able to review their result
and, if they think their feedback is unfair or incomplete, can create either a
complaint to ask for a different score or a feedback request to ask to elaborate
the comments. These requests are then evaluated by a second, different re-
viewer, who can override the previous result with a new, improved result and
write a response for the complaint or feedback request. The final feedback
is presented to both the student and the instructor; the instructor can then
use the results to determine the student’s score or grade.

3.1.2 Artemis Manual Assessment Workflow

In order to assess a submission in the workflow described in the previous sec-
tion, reviewers need to navigate to the assessment dashboard of the exercise
and then select to assess a submission. This opens the assessment view of a
submission as shown in Figure 3.2. The top right corner (1) contains con-
trol buttons to save, submit, or cancel the assessment as well as information
about the lock ensuring each submission is only assessed by one reviewer at
a time.

The current result (3) with its score is located below the controls. Clicking
on it opens a pop-up showing all assessment comments, both automatic and
manual. The output of the last build is also shown below (10). Next to the
result are buttons to download the submission (2) in case the reviewer wants
to take a close look at the repository or download the code.

The center is filled with the online code editor [Mon17]. On its left side
(4), reviewers can browse the student’s files. On the right side, the editor
shows the problem statement (6), a link to the example solution (7), the
assessment instructions (8), and the SGIs [Elh20] (9). These are suggestions
for feedback comments prepared by the instructors. Reviewers can simply
drag-and-drop them onto a new comment to apply them. This unifies the
feedback and accelerates the assessment process.

In the middle of the editor (5), the selected file is shown. The editor

11

CHAPTER 3. REQUIREMENTS ANALYSIS

1

2 3

4 5

6

7

8

9

10

11

Figure 3.2: Current system: screenshot of the assessment view. The style has
been slightly adapted to avoid scroll bars.

12

3.1. CURRENT SYSTEM

highlights which lines have been added by the student (in green). Reviewers
can leave inline feedback comments referencing a specific line [lCY21]. A
comment consists of both a text and a score and is colored depending on
whether the score is positive or negative. Reviewers can also create and edit
general assessment comments not referring to a specific line using the buttons
at the bottom (11).

3.1.3 Orion

The Orion plugin for IntelliJ was developed by Ungar [Ung20] in order to
improve the steps Start Exercise and Solve Exercise from Figure 3.1 for
students as well as Set up Exercise for instructors. It is installed into the
IDE IntelliJ, where it offers a special tool window, containing an integrated
browser. With this browser, users can interact with Artemis from within
their IDE.

If a student opens an exercise with Orion, instead of getting presented
a button to receive a link to their personal repository which they can use
to clone it, they get a button that automates that. This button directly
downloads the repository, sets up an IntelliJ project for it, and opens it.
Students can then use the project regularly, e.g. open and edit files. The
Orion window shows the problem statement as well as a button to submit
their changes, as shown in Figure 3.3, with the Orion tool window on the
right, the editor in the center and the file browser to the left. When clicking
the submit button, Orion automatically commits and pushes all changes to
Artemis and then connects to the output of the automatic build process to
show it in the regular IntelliJ build view, as if it was a local build. Students
do not need to manually interact with the repository and also don’t need
an external browser for Artemis. With Orion they can solve programming
exercises only using in IntelliJ.

Similarly, Orion helps instructors to create exercises. After configuring
the settings, instructors can open the exercise in Orion, which automati-
cally downloads template, test, and solution repository, configures them as
modules in an IntelliJ project, and opens that project. They can then edit
the files while Orion provides an editor for changing the problem statement,
a button to automatically commit and push all changes, and a button to
run the current tests locally without any further configuration. This view is
shown in Figure 3.4 with the three repositories as modules in the file browser
on the left side, the editor in the middle, and the Orion tool window to the
right.

13

CHAPTER 3. REQUIREMENTS ANALYSIS

Figure 3.3: Current System: Screenshot of IntelliJ with Orion from a student’s
perspective while solving an exercise

Figure 3.4: Current System: Screenshot of IntelliJ with Orion from an instruc-
tor’s perspective while setting up an exercise

14

3.2. PROPOSED SYSTEM

3.2 Proposed System

This section explains the precise objectives of this thesis by defining the
functional requirements in Section 3.2.1 and the nonfunctional requirements
in Section 3.2.2.

3.2.1 Functional Requirements

This section covers the functional requirements of the system, which describe
how the system interacts with other systems and the user [BD09, p. 119].
The requirements are split into two parts: First we describe how the system
should interact with the user in order to download and execute student
submissions, later we define how reviewers add assessment comments for
manual assessment in Orion. The requirements are adapted from Young
[lCY21] since the manual assessment in Orion shares its characteristics with
the manual assessment of programming exercises in Artemis.

Download and Execute Student Submissions

FR1.1 Start Assessment of Exercise: Reviewers must be able to start
the assessment of a programming exercise in Orion. Orion should
automatically download the automatic tests and configure them.

FR1.2 Assess Submission: Reviewers must be able to start assessing
a student’s submission and download it in Orion. The submission
must be anonymized to allow for a blind assessment. During the
assessment, the submission must be unavailable for other reviewers
to ensure one submission is only assessed by one reviewer at a time.

FR1.3 View Code in IDE: Reviewers must be able to view the student’s
code. The view must be configured to provide all of IntelliJ’s IDE
support, including syntax highlighting, auto-formatting, and code
completion.

FR1.4 Highlight Changes: Reviewers must be able to identify the stu-
dent’s changes quickly. Orion must highlight them relative to the
initial template code, which was provided by the instructor.

FR1.5 Edit and Execute Student’s Code: Reviewers must be able to
edit their local copy of the student’s code and execute the automatic
tests on it. The configuration to run the tests must be provided
automatically. This enables reviewers to test local fixes in order to
improve their understanding of the student’s code.

15

CHAPTER 3. REQUIREMENTS ANALYSIS

FR1.6 Support Feedback Requests and Complaints: Assessment in
Orion should also be available for reviews of complaints and more
feedback requests.

Manual Assessment in Orion

FR2.1 View Problem Statement and Assessment Instructions: Re-
viewers must be able to view the problem statement of the assessed
exercise as well as the assessment instructions as defined by the
instructor.

FR2.2 View Result: Reviewers must be able to view the student’s current
build result and score as reported by the CIS system and shown to
the student after submitting.

FR2.3 View Feedback: Reviewers must be able to view the current feed-
back comments, both automatic and manual. Inline feedback must
be displayed inline.

FR2.4 Add, Edit, and Delete Feedback: Reviewers must be able to
add, edit, and delete feedback comments. Feedback comments can
be either general, referring to a file, or inline, referring to a certain
line of code. A comment must have a text and a score.

FR2.5 Save Assessment: Reviewers must be able to save their feedback
comments. This should store the local comments on the Artemis
server. The feedback needs to be compatible with Artemis’s current
feedback format and must be indistinguishable from feedback added
via the web client.

FR2.6 Cancel Assessment: Reviewers must be able to cancel their as-
sessment. This should remove all their pending comments and make
the submission available for assessment for other reviewers again.

FR2.7 Use Structured Grading Instructions: Reviewers must be able
to use SGIs in Orion. The instructions must be shown and it must
be possible to drag-and-drop them into a new feedback.

3.2.2 Nonfunctional Requirements

This section lists the nonfunctional requirements. These are requirements
not directly associated with the behavior of the system [BD09, p.120]. They
are categorized using the FURPS+ model [Gra92] as described by Brügge
and Dutoit [BD09, p-120-121], including the category constraints.

16

3.2. PROPOSED SYSTEM

Usability

NFR1.1 Usage Complexity: The amount of interactions required to run
the student’s code after starting the assessment should be reduced
from the current minimum of eight interactions1 to a minimum of
one interaction2.

NFR1.2 Usage Complexity: The amount of interactions required to add
assessment comments after starting the assessment should not in-
crease from the current minimum of two interactions3.

NFR1.3 Graphical User Interface (GUI) Consistency with Artemis:
The GUI elements added in Artemis should look similar to the cur-
rent view. The color scheme, button descriptions, and positions
should match the ones of the current system. Reviewers accustomed
to the current system should be able to immediately adapt to the
proposed system.

NFR1.4 GUI Consistency with IntelliJ: GUI elements added in IntelliJ
should follow the IntelliJ UI Guidelines4 to be consistent with the
GUI of the IDE.

Reliability

NFR2.1 Download Large Repositories: The proposed system should be
able to download student repositories up to a size of 10 megabytes
when using default settings and terminate gracefully if the limit is
exceeded.

NFR2.2 Illegal Input: The proposed system should prevent illegal input
and ensure only valid feedback is sent to the server. All feedback
referencing files needs to reference an existing file and all feedback
scores need to be valid numbers.

1 Two clicks to view the repository’s URL and copy it, at least two clicks to clone it, at
least three clicks to copy the repository into an IntelliJ project, and one click to start
the test run configuration

2 One click to start the already provided and selected run configuration
3 One click on the line to add the comment and one click to save it
4 https://jetbrains.github.io/ui

17

https://jetbrains.github.io/ui

CHAPTER 3. REQUIREMENTS ANALYSIS

Performance

NFR3.1 Communication Between Artemis Client and Server: The
proposed system should not slow down the communication between
the Artemis client and Artemis server. All operations that are al-
ready available in Artemis should not require more data being sent
between the client and server if invoked from Orion.

NFR3.2 Load Time: The duration between clicking the button to start as-
sessing a submission and the assessment becoming available should
be at most three seconds longer than downloading the submission
using a regular browser.

NFR3.3 Save Time: The duration between clicking the button to save a
feedback in Orion and the feedback being stored in the Artemis
client should be at most one second longer than saving the same
feedback in the web client directly.

Constraints

NFR5.1 Platform: The features need to extend the existing Orion plugin5.
The plugin is written mostly in Kotlin6 and needs to use the IntelliJ
platform Software Development Kit (SDK)7.

NFR5.2 Platform: Changes in the GUI on the web client need to be inte-
grated into the current Artemis client8, which is written in Angular9.

3.3 System Models

In this section we provide various models to describe the proposed system.
We present scenarios in Section 3.3.1, derive use cases from the requirements
in Section 3.3.2, we define the analysis object model in Section 3.3.3, the
dynamic model in Section 3.3.4, and show the changes of the user interface
in Section 3.3.5.

5 https://github.com/ls1intum/Orion
6 https://kotlinlang.org
7 https://plugins.jetbrains.com/docs/intellij/welcome.html
8 https://github.com/ls1intum/Artemis
9 https://angular.io

18

https://github.com/ls1intum/Orion
https://kotlinlang.org
https://plugins.jetbrains.com/docs/intellij/welcome.html
https://github.com/ls1intum/Artemis
https://angular.io

3.3. SYSTEM MODELS

3.3.1 Scenarios

In this section we present one visionary and two demo scenarios. They de-
scribe one specific interaction of a user with the system [BD09, p. 126].
Visionary scenarios describe a potential future system, demo scenarios de-
scribe workflows that are possible with the proposed system. In the scenarios,
the proposed system is split into three subsystems: The user’s IDE IntelliJ,
the Orion plugin installed into it, and the Artemis client running in Orion’s
integrated browser. We present one visionary scenario

Visionary Scenario: Offline Assessment

This scenario has one participating actor, the tutor Alice. Alice has opened
IntelliJ with Orion and has navigated to Artemis’s assessment dashboard for
the exercise “Introduction” in the course “Introduction to Software Engi-
neering” in the integrated browser.

On the dashboard, Artemis presents buttons to start the assessment of
a new submission as well as a button to start the assessment for multiple
submissions. Alice selects to assess 10 new submissions, which Orion down-
loads. Alice then goes on her way home and disconnects from the internet.
Orion notices the disconnect and switches to offline mode, showing its own
GUI instead of Artemis, displaying the previously downloaded submissions
and offering buttons to assess them. While riding home on the train, Alice
assesses the submissions by navigating to them and adding assessment com-
ments. Orion stores these comments locally. Once home, Alice reconnects
with the internet. Orion notices this, loads Artemis again, and automatically
synchronizes the local feedback with Artemis.

Demo Scenario: Tutor Edits and Tests Submission

This scenario has one participating actor, the tutor Alice. She has opened the
assessment dashboard for the course “Introduction to Software Engineering”
in Orion.

In the dashboard, Artemis shows a list of all exercises for the course.
Alice selects the exercise “Introduction”, which has unassessed submissions.
Artemis then orders Orion to open this exercise in assessment mode. Orion
downloads the required repositories for the exercise into a new project and
instructs IntelliJ to open that project. After opening the new project, Orion
displays Artemis’s exercise assessment dashboard for the open exercise. Alice
gets presented a list of her assessments in the exercise as well as buttons to
continue or start new assessments.

19

CHAPTER 3. REQUIREMENTS ANALYSIS

Alice clicks the button to open a new assessment. Orion then downloads
a new submission into the open project and opens the submission page for
it. This page contains the problem statement of the exercise, the assessment
instructions, and the current test results and grade. Alice opens several files
of the submission in IntelliJ and looks at the test results. She suspects the
submission has wrongly initialized one variable with 1 instead of 0 but is not
entirely sure. In order to make sure, she edits the file with her fix and then
selects to execute the tests in IntelliJ with a configuration provided by Orion.
IntelliJ runs the tests and shows that the submission passes more tests now.
Alice uses this information to edit the score accordingly.

Demo Scenario: Tutor Adds and Removes Feedback Comments

This scenario has one participating actor, the tutor Alice. She has opened the
assessment of a submission in IntelliJ with Orion. Orion shows the submission
page of the submission in its integrated browser and displays all current inline
feedback.

Alice reviews the code and sees that the student has correctly imple-
mented a method. She wants to add a new inline feedback for this method,
so she clicks a button in the editor on the line she wants to add the feedback
to. Orion then creates an empty feedback in that line. Alice enters “Well
done” as feedback text, sets the score associated with the feedback to “2”,
and clicks save. She then realizes the student has made a mistake in the
method above and wants to remove her previous feedback for that line. She
clicks the edit button on the feedback and then the delete button. Orion then
removes the feedback. She decides she is done with the submission and clicks
the save button in Artemis. Orion then overrides the feedback in Artemis
with the local feedback.

3.3.2 Use Case Model

This section covers the use cases of the proposed system, which are gener-
alized scenarios [BD09, p. 130]. They show the relationship between users
and the requirements. This section is split into the same two parts as the
functional requirements: We first show the use cases that describe how to
download and execute student’s submission and afterwards how to
perform manual assessment in Orion.

20

3.3. SYSTEM MODELS

Orion

Start Assessment

Assess
Submission

Reviewer

View
Complaint

View
Feedback Request

«extend»

Edit
Submission

Execute Instructor
Tests

 «extend»

Highlight
Changes

 «include»

Download
Submission

«include»

Figure 3.5: UML use case diagram displaying use cases associated with down-
loading and executing the students’ submissions. Added use cases
are colored green.

Download and Execute Student Submissions

Figure 3.5 shows the use cases as UML use case diagram [BRJ05, chapter
17]. Reviewers can start the assessment of an exercise (FR1.1) and afterwards
view the students’ submissions (FR1.3). Viewing the submission requires to
download it (FR1.2); the view also highlights the code changes (FR1.4).
Viewing complaints and more feedback requests (FR1.6) are special cases
of viewing normal submissions where, in addition to the submission, the
complaint or feedback request is shown. Highlighting the code and reviewing
submissions, complaints, and feedback requests are already existing use cases
in Artemis. While viewing the submission, reviewers can also edit it and
execute the instructor tests on it (FR1.5).

Manual Assessment in Orion

The use cases for the manual assessment in Orion are shown in Figure 3.6.
All use cases are already present in Artemis and only need to be ported
to Orion. While viewing the submission, reviewers can view the problem
statement and assessment instructions (FR2.1), the result (FR2.2), and the
current feedback (FR2.3). They are also able to update the feedback, that
is to add, delete, and edit feedback comments (FR2.4). Additionally, they
can use SGIs (FR2.7), which also update the feedback. We describe this

21

CHAPTER 3. REQUIREMENTS ANALYSIS

use case in more detail in Table 3.1 with the template from Brügge and
Dutoit [BD09, p. 129]. Lastly, reviewers can save (FR2.5) or cancel (FR2.6)
their assessment.

Use case name Use Structured Grading Instructions
Participating
actors

Initiated by Reviewer

Flow of events 1. The Reviewer selects to add a new feedback com-
ment at a specific line.

2. Orion displays a new feedback com-
ment at the given line.

3. The Reviewer chooses a structured grading in-
struction to fill into the feedback.

4. Orion sets the detail text and score
of the new comment to the values
provided by the grading instruction.

5. The Reviewer selects to save the new comment.

6. Orion saves the newly created com-
ment in Artemis.

Entry condition • The Reviewer has opened an assessment in Orion.
• The Reviewer has a file from the submission open

in an editor.

Exit condition • The new comment has been saved by Artemis.

Quality
requirements

• Saving the new comment should take at most 2 sec-
onds.

Table 3.1: Use Structured Grading Instructions as a use case detail description

3.3.3 Analysis Object Model

The analysis object model of the proposed system is shown in Figure 3.7
as UML class diagram [BRJ05, chapter 8]. It depicts the relationships and
taxonomies of the problem. The diagram is based on Young [lCY21, p. 33].

An assessment always belongs to a Programming Exercise. The exercise
has, among other properties, a problem statement, assessment instructions, a

22

3.3. SYSTEM MODELS

Orion
View Problem

Statement

View
Feedback

«include»

View
Result

View Assessment
Instructions

Use
Structured Assessment

InstructionsUpdate
Feedback

Save
Assessment

Cancel
Assessment

Reviewer

Figure 3.6: UML use case diagram displaying use cases associated with manual
assessment in Orion.

start and end date, and three Repositories : template, solution, and test. The
exercise also has an arbitrary amount of Participations belonging to it, with
a new participation created for every student starting the exercise. Each
Participation is associated with a unique Repository storing the student’s
code; each student repository also belongs to exactly one participation. The
Repository consists of Files and has a Uniform Resource Locator (URL)
allowing to both download its contents and commit changes to it.

Each Participation manages an arbitrary amount of Submissions, each
representing one submitted change. Each Submission receives a Result that
gives feedback about the score of the submission. Artemis creates an auto-
mated result for each submission by executing the instructor tests. Addi-
tionally, reviewers can create results by performing a manual assessment. In
order to ensure fair, blind grading, submissions are anonymized; to ensure
one submission is only assessed by one reviewer at a time, they can be locked
or unlocked.

Each Result consists of an arbitrary amount of Feedback Comments. Each
comment has a detail text and a score assigned to it. The score of the Result is
calculated as the sum of the scores of its comments; the result also needs to be
validated, ensuring all comments have a text and score. Feedback Comments

23

CHAPTER 3. REQUIREMENTS ANALYSIS

FeedbackComment

− detailText: String
− score: Number
+ edit(text: String, score: Number)
+ delete()

InlineFeedback

− line: Number

File

− content: String
− path: String

+ view()

Editor

− hightlightedLines: Number[]

+ viewInlineComments()
+ addInlineComment(line: Number)
+ editCode()

Repository

− url: String

+ download()
+ commitChanges()

ProgrammingExercise
− problemStatement: String
− assessmentInstructions: String
− startDate: Date
− dueDate: Date
+ start()

Participation

Submission

+ anonymize()
+ lockSubmission()
+ unlockSubmission()
+ executeTests()

Result

− score: Number
+ calculateScore()
+ validate()
+ view()

FileFeedback

StructuredGradingInstruction

− detailText: String
− score: Number
− description: String

+ apply()

0..*

test,
template,
solution

31

1

1
1

studentParticipations

1

0..*

0..*

1

1

1..*

0..* 1

feedback

reference
1

1

1

1

displayedFile

0..1

1

displayed
Comments

content

GeneralFeedback

1

1

reference

Figure 3.7: UML class diagram depicting the analysis object model, based on
Young [lCY21, p. 33]

are either General Feedback, File Feedback, referencing a file of the repository,
or Inline Feedback, referencing a specific line of a file. Comments can also be
created using a Structured Grading Instruction which has a predefined detail
text and score as well as a description explaining when it should be applied.

Lastly, a File can be displayed in an Editor. The editor highlights the
changes by the student and displays all inline comments referencing the
opened file. It also allows to edit the file or add new inline comments.

3.3.4 Dynamic Model

This section models the proposed assessment process as an UML activity di-
agram [BRJ05, chapter 19] in Figure 3.8. At first, the reviewer needs to start
the assessment of the exercise. The system then either downloads or opens
the exercise, depending on whether it has been downloaded before already.
After the exercise is opened, the reviewer starts assessing a submission. This
causes Orion to download a submission and highlight the code changes.

Afterwards the main assessment process starts, which consists of the re-

24

3.3. SYSTEM MODELS

Assess Exercise

Reviewer Orion

Download Exercise Open Exercise

Assess Submission

Download Submission

View Problem Statement

View Assessment Instructions

View Result

View Feedback

View Code

Edit Code

Execute Code

Update Feedback

Highlight Changes

Use SGIs

Cancel Submission?
Unlock Submission

Submission Done?

Delete Feedback

Save Feedback

Exercise Downloaded?

Exercise Done?

yes

yes

yes

yes

no

no

no

no

Figure 3.8: UML activity diagram of the proposed assessment process

25

CHAPTER 3. REQUIREMENTS ANALYSIS

viewer performing the following actions in any order: view the problem state-
ment, assessment instructions, result, feedback, and code, edit and execute
the code, update feedback, and use SGIs. The reviewer can also decide to
cancel the assessment of the submission at any point. In that case, Orion
deletes all current feedback and unlocks the submission, allowing other re-
viewers to assess it. The reviewer continues with these actions until they
decide they are done with the submission. Orion then saves the feedback.
After either saving the feedback or cancelling, the reviewer can decide to
either continue assessing the exercise and start assessing a new submission
or to stop, in which case the process ends.

3.3.5 User Interface

After modeling the requirements using different methods, we present the
proposed changes of the GUI. Due to the system being finished before this
thesis, we use screenshots of the implemented system instead of mock-ups.

After selecting the exercise they want to assess, reviewers get presented
the exercise assessment dashboard. If they connect using Orion, they get
presented the views shown in Figure 3.9. The view on the left is presented
to reviewers if the exercise is currently not opened in Orion. Instead of the
submissions, reviewers get a button that, when clicked, downloads or opens
the exercise. If they have opened the selected exercise, they see the right
view, showing a list of all of their assessments as well as a button to start a
new assessment. This view differs from the current system with the buttons
not opening the code editor but instead triggering the assessment download
in Orion. When IntelliJ is opened with an assessment project without a
current submission, Orion automatically navigates to this page.

IntelliJ’s interface during the assessment process, after downloading a
submission, is shown in Figure 3.10 and Figure 3.11. On the left side (1 in
both figures) there is the IntelliJ file browser, allowing to select the student’s
files and test files. The middle (2 in both figures) is occupied by IntelliJ’s
code editor. In Figure 3.10 it is in edit mode, behaving like a regular editor
with the reviewer being able to edit the files. In Figure 3.11 it is in assess-
ment mode, being read-only but instead displaying assessment comments and
enabling reviewers to add new inline comments. The comments look similar
to Artemis’s GUI, fulfilling NFR1.3. Reviewers can switch the editors using
the bar at the bottom (3 in both figures). If reviewers want to execute the
code, they can use the provided run configuration and click the “run” button
at the top (4 in both figures).

On the right side, Orion displays Artemis’s Orion version of the assess-
ment detail view/code editor, Artemis’s view is shown in Figure 3.2. Orion

26

3.3. SYSTEM MODELS

Figure 3.9: Proposed System: Screenshots of the exercise assessment dashboard
when connecting via Orion.

displays the same information excluding the code editor since viewing the
code is done in IntelliJ. At the top (5 in Figure 3.10) there are buttons to
save, submit, or cancel the assessment as well as the current result of the
student. Below follows the problem statement (6 in Figure 3.10) and, after
scrolling down, the assessment instructions (5 in Figure 3.11) and the general
feedback (6 in Figure 3.11) as well as a button to add new general feedback.

27

CHAPTER 3. REQUIREMENTS ANALYSIS

1 2

3

4

5

6

Figure 3.10: Proposed System: Screenshots of IntelliJ with Orion during the
assessment with the editor in edit mode.

1 2

3

4

5

6

Figure 3.11: Proposed System: Screenshots of IntelliJ with Orion during the
assessment with the editor in assessment mode.

28

Chapter 4

System Design

This chapter describes how the requirements map to the solution domain, fol-
lowing the system design document template by Brügge and Dutoit [BD09,
chapter 6–7]. We give an overview of the architecture in Section 4.1, derive
design goals from the requirements in Section 4.2, model the subsystem de-
composition in Section 4.3, and explain the hardware/software mapping in
Section 4.4.

4.1 Overview

Following the constraints from Section 3.2.2, the proposed system needs to
be integrated into the existing Artemis and Orion systems. The general ar-
chitecture of the system is shown in Figure 4.1 as a UML component diagram
using the syntax of Brügge and Dutoit [BD09, chapter 6.4].

Users interact with Artemis via the Artemis Client. The client is written
in Angular1 and uses a layered architecture style [BMR+96, chapter 2.2] with
the following two layers. The Orion subsystem in the client is part of the
same layers.

• The User Interface (UI) Layer consists of Angular components
[Fre20, chapter 17] that manage the user interaction by providing the
GUI. The style is done using Bootstrap2. It registers user interactions
and relays them to the service layer.

• The Service Layer performs the client side business logic and handles
the user interactions. If necessary, it sends requests to the server to
retrieve data.

1 https://angular.io
2 https://getbootstrap.com

29

https://angular.io
https://getbootstrap.com

CHAPTER 4. SYSTEM DESIGN

Artemis
Client

Artemis
Server

Version
Control System

Continuous
Integration System

User Management
System

Orion
Plugin

Orion Adapter

Repository
Management

Build Plan
Management

Access Management

Figure 4.1: UML component diagram of the general architecture of Artemis and
Orion adapted from Münch [Mü16, p. 44].

The Artemis Server is written in Java3 using the Spring framework4 and a
MySQL5 database. Artemis’s server requires a VCS to manage the reposito-
ries for programming exercises and a CIS to perform the automatic test runs.
Additionally, access management is handled by a separate User Management
System.

The Orion Plugin displays the Artemis client using the Java Chromium
Embedded Framework (JCEF) implementation provided by IntelliJ6 and con-
nects to it using the Orion Adapter [Ung20]. The plugin is organized using
IntelliJ’s services7 without following a specific architecture style. User in-
teractions get triggered in the Artemis client, sent through the adapter and
then relayed to the relevant service.

4.2 Design Goals

In this chapter we derive design goals from the nonfunctional requirements
from Section 3.2.2 and prioritize them. We also discuss conflicts between
design goals and how we solve them.

Usability Since this thesis mainly aims to improve the assessment process
for reviewers, usability has highest priority. We need to create a GUI
simple enough to be capable of conforming to the limit of interactions to

3 https://www.java.com
4 https://spring.io/
5 https://www.mysql.com
6 https://plugins.jetbrains.com/docs/intellij/jcef.html
7 https://plugins.jetbrains.com/docs/intellij/plugin-services.html

30

https://www.java.com
https://spring.io/
https://www.mysql.com
https://plugins.jetbrains.com/docs/intellij/jcef.html
https://plugins.jetbrains.com/docs/intellij/plugin-services.html

4.2. DESIGN GOALS

perform certain tasks defined by NFR1.1 and NFR1.2. Additionally,
the GUI needs to be familiar to reviewers being used to the current
assessment process, therefore the components need to look similar to
the ones currently in use (NFR1.3). The GUI also needs to seamlessly
integrate with IntelliJ (NFR1.4).

Usability vs. Readability [BD09, p. 245] Due to the different display
size of Orion’s integrated browser, Artemis’s GUI needs to be rear-
ranged to fit the limited space. Further altering the GUI improves
usability, but also requires more code, reducing its readability since
more special cases for different screen sizes are needed. In these cases
we prioritize the usability, sacrificing readability if necessary.

Performance In order to make use of the usability improvements, the per-
formance of the system must not be notably worse than the current
process, otherwise the speedup by the automation would be nullified.
The system must conform to the performance requirements NFR3.1,
NFR3.2, and NFR3.3.

Performance vs. Maintainability and Portability In order to optimize
performance, a large interface between Orion and Artemis is required
to separately optimize every operation, e.g. by handling the addition,
deletion and editing of feedback comments separately and only transfer-
ring the changed details. Such a large interface, however, is also more
difficult to maintain and decreases portability since the systems are
more coupled and less flexible. As long as we stay within the required
performance thresholds, we prefer to sacrifice a bit of performance in
order to keep the interface smaller and therefore easier to maintain, e.g.
by performing an update operation transferring all feedback comments
for every change.

Extensibility Some components of Artemis’s client are changed for users
connecting via Orion. The two variations of the components should be
only loosely coupled; Artemis’s components should not be dependent
on Orion but instead provide generic extension points. This allows
for easier extensions with e.g. future plugins by removing the direct
coupling to Orion. It also improves modifiability since Artemis’s com-
ponents can be changed independent from Orion.

31

CHAPTER 4. SYSTEM DESIGN

Artemis Client

UI Layer

Artemis Server Orion Plugin

Service Layer

Exercise Assessment Dashboard

Code Editor Tutor Assessment

Orion Exercise Assessment Dashboard

Orion Tutor Assessment

Orion Connector Service

Orion Assessment Service Assessment Repository
Export Service

Submission Service

Assessment Management Orion Assessment Management

Assessment Manual
Result Service

Exercise Service

Assessment ManagementExercise Management Orion Subsystem

Exercise API Assessment API Exercise ConnectorClient Connector

Figure 4.2: UML component diagram of the relevant parts of the Artemis client.
Added components are colored green, modified components are col-
ored blue.

4.3 Subsystem Decomposition

This section explains the detailed decomposition of the Artemis client in
Section 4.3.1 and of the Orion plugin in Section 4.3.2.

4.3.1 Client Decomposition

The decomposition of the relevant client components is shown in Figure 4.2
as a UML component diagram. On the UI layer, two Artemis components
are important for the manual assessment process of programming exercises:
the Exercise Assessment Dashboard lets the user manage their assessments
for an exercise by providing a list of all assessed submissions, both finished
and unfinished, offering to start new assessments, and displaying general
information about the exercise, e.g. the total assessment progress. The Code
Editor Tutor Assessment, shown in Figure 3.2, allows to perform the actual
assessment by displaying the student’s code in a code editor and letting the
reviewers leave assessment comments. Both of these components need to be
modified to provide extension points.

These extension points are then used by the newly created Orion Exercise
Assessment Dashboard (shown in Figure 3.9) and Orion Tutor Assessment
(shown in Figure 3.10 and Figure 3.11 on the right side) which replace the

32

4.3. SUBSYSTEM DECOMPOSITION

assessment in the code editor with the assessment in Orion. The nature of
these extension points is elaborated on in Section 5.1. Business logic like the
preparation of downloading submissions is delegated to the newly created
Orion Assessment Service. This service then delegates to existing services
like the Submission Service to retrieve submissions to assess and the Assess-
ment Repository Export Service to get a download file of the student’s code,
reusing the same methods that are used by Artemis’s current components.
The services then either delegate to further services or retrieve the requested
data from the server using the Exercise API or Assessment API.

The communication with the Orion plugin is handled by the Orion Con-
nector Service, which serves as a façade [GHJV07, chapter 4.5] for all Orion
subsystems in the client [Ung20, chapter 5.3.1]. The service is extended with
the new operations required for the assessment. Operations triggered in the
components, like starting and downloading a new assessment, first get pro-
cessed in the Orion Assessment Service and are then relayed to the Orion
Connector Service, which sends the data to the plugin through the Exercise
Connector.

Updates from the plugin, like an update of the feedback comments, are
sent from the plugin through the Client Connector. The Orion Connector
Service relays them to the Orion Tutor Assessment, which further relays
them to its Code Editor Tutor Assessment, treating the updates as if they
were made by the code editor.

4.3.2 Orion Decomposition

The decomposition of the relevant components in the Orion plugin are shown
in Figure 4.3 as a UML component diagram. The communication from the
Artemis client concerning exercises is handled by the Exercise Connector. All
new operations like the download of assessments and submissions have been
added to it. The operations are then handled by the Orion Exercise Service,
which processes the requests and then delegates to the Orion Git Adapter to
perform the download operation and the Exercise Registry to store Artemis’s
exercise data. The service and the registry have been extended to also man-
age assessment projects. The configuration of the repositories is handled by
the Instructor Project Creator for instructor projects or by the newly created
Tutor Project Creator for assessment projects.

The assessment comments are handled by the Orion Assessment Service.
The feedback is initialized by Artemis through the Exercise Connector and
any local updates get sent to Artemis with the Client Connector. In order to
display the feedback, the new Orion Editor Provider has been added. When-
ever a file belonging to an assessment is opened, the provider opens the Orion

33

CHAPTER 4. SYSTEM DESIGN

Orion

Connector Subsystem

Orion Editor Provider

Client Connector

Artemis Client

Exercise Connector

Exercise ManagementAssessment UI

Orion Assessment Editor

Gutter Icon Controller

Orion Exercise Service

Orion Assessment Service

Tutor Project Creator

Instructor Project Creator

Orion Git Adapter

Exercise Registry

IntelliJ VCS Plugin

VCS Subsystem

Figure 4.3: UML component diagram of the relevant parts of the Orion plugin.
Added components are colored green, modified components are col-
ored blue.

Assessment Editor as well as the normal editor. The Orion Assessment Ed-
itor then queries the relevant feedback from the Orion Assessment Service
and displays it inline. The editor also uses the Gutter Icon Controller which
displays the icons to add new feedback comments. Adding, editing or dele-
tion of comments is then synchronized with the Orion Assessment Service,
relayed to the Client Connector and from there sent to Artemis.

4.4 Hardware/Software Mapping

Figure 4.4 displays the hardware/software mapping of Artemis and Orion as
UML deployment diagram [BRJ05, chapter 26], adapted from Ungar [Ung20],
since the deployment of the plugin did not notably change.

The Artemis Server is deployed in the University Data Center along
with its Version Control Server, the Continuous Integration Server, and the
User Management Server. These servers interact as described in Section 4.1.
The Artemis Server also supports integrating an external Course Platform.
The Continuous Integration Server delegates its build to its internal Build
Agents, but can also use remote build agents from an Infrastructure-as-a-
Service (IaaS) Provider to increase performance.

The reviewer interacts with the system through IntelliJ, which needs to
be installed on the Reviewer Machine. In IntelliJ, Orion is installed as a

34

4.4. HARDWARE/SOFTWARE MAPPING

Artemis Client

«infrastructure»
University Data Center

«device»
Artemis Server

Artemis Server

«device»
Continous Integration Server

Continous Integration
System

Build Agent

«device»
User Management Server

User Management
System

«device»
Version Control Server

Version Control System

«infrastructure»
Iaas Provider Data Center

«instance»
Continous Integration Instance

Remote Build Agent

«instance»
Continous Integration Instance

Remote Build Agent

«infrastructure»
Course Platform Data Center

«device»
Course Platform Server

Course Platform

«device»
Reviewer Machine

«integrated development environment»
IntelliJ

Orion IntelliJ VCS Plugin

Figure 4.4: UML deployment diagram of Artemis’s and Orion’s infrastructure,
adapted from Ungar [Ung20]. Modified components are colored
blue.

plugin. Orion displays the Artemis Client using the integrated browser and
communicates with it through the Orion adapter. It also delegates to the
IntelliJ VCS Plugin, which can interact with the Version Control Server to
download repositories.

35

Chapter 5

Object Design

This sections discusses details of the implementation that optimize the sys-
tem model. We show how we achieved low coupling between Artemis’s and
Orion’s subsystems in the Artemis client in Section 5.1 and how we prevented
the system from reaching invalid states during loading in Section 5.2.

5.1 Decoupling Orion from Artemis

Orion has some dedicated code in the Artemis web client, e.g. to display
the Orion specific buttons and the required services to connect them to the
plugin. One of the affected components is the CourseExerciseDetailsCom-

ponent. We first explain the purpose of this component in Section 5.1.1,
then describe how the current system implements these extensions and why
this approach is flawed in Section 5.1.2, and finally present a refactoring to
address these flaws in Section 5.1.3.

5.1.1 Overview

The CourseExerciseDetailsComponent is the component shown to students
while solving an exercise, see Figure 3.3. It presents the problem statement
as well as the current result. At the top of the component it displays the Ex-

erciseDetailsStudentActions. For programming exercises, these actions
can be in one of three states:

• If the student did not yet start the exercise, a button to start the
exercise is shown, which, when clicked, creates the participation.

• After starting the exercise, the component shows two buttons: One to
receive a link for the repository to clone it, and one to open the online
code editor to solve the exercise.

36

5.1. DECOUPLING ORION FROM ARTEMIS

ExerciseDetailsStudentActions

− exercise: Exercise
− startButton: Button
− continueButton: Button
− showUrlButton: Button
− openCodeEditorButton: Button

+ startExercise()
+ resumeProgrammingExercise()
+ repositoryUrl(p: Participation)

OrionExerciseDetailsStudentActions

− exercise: Exercise
− startButton: Button
− continueButton: Button
− importParticipationButton: Button
− submitButton: Button

+ startExercise()
+ resumeProgrammingExercise()
+ importParticipation()
+ submit()

CourseExerciseDetailsComponent

− exercise: Exercise
− problemStatement: Component
− result: Component

+ loadExercise()

OrionConnectorService

− isOrion: Boolean

+ importParticipation(e: Exercise)
+ submit()

OrionFilterDirective

− showInOrion: Boolean

+ onChanges()

1

1

1

1

1 2

studentActionsFilter,

orionStudentActionsFilter

Component

1

1 associatedComponentCourseExerciseService

Figure 5.1: UML class diagram of the previous implementation of the
CourseExerciseDetailsComponent and associated components and
services

• If the participation did get inactive, a button to continue the exercises
is displayed, which reactivates the participation.

If the user connects using Orion, the actions still have a start and continue
button, however, instead of the repository link and the code editor, two
special buttons appear:

• If the opened IntelliJ project is not the one belonging to the exercise,
a button to download or reopen the exercise in Orion is shown.

• If the exercise is open in Orion, the submit button is displayed.

5.1.2 Current Approach

The current system has two different ways of implementing these extensions
into the client, which are both present in the example. The relevant compo-
nents, directives, and services are modeled as a UML class diagram [BRJ05,
chapter 8] in Figure 5.1.

The first approach is present in the ExerciseDetailsStudentActions

and the OrionExerciseDetailsStudentActions. Both components can be
used interchangeably and have all required buttons as well as the implementa-
tion of their click handlers. Button clicks get processed and then forwarded
to the CourseExerciseService or, for Orion calls, to the OrionConnec-

torService.

37

CHAPTER 5. OBJECT DESIGN

The second approach is present in the CourseExerciseDetailsCompo-

nent. It has both variations of student actions as child components. To orga-
nize which of the two student actions gets displayed, it attaches an OrionFil-

terDirective to both of them, setting showInOrion for the ExerciseDe-

tailsStudentActions to false and for the OrionExerciseDetailsStuden-

tActions to true. The filter directive then connects to the OrionConnec-

torService to receive whether the user uses Orion. Using this information
and the internal showInOrion, it sets its associated component to either
visible or invisible.

Both of these approaches are flawed. The first approach generates code
duplication. In this case, the start exercise and continue exercise buttons
and the handling of their clicks are duplicated in both components. This
worsens maintainability and also yields the high risk of a developer over-
looking one of the places and only changing one instance of the duplicated
code, potentially breaking the other instance. The second approach creates
a coupling between the CourseExerciseDetailsComponent and the Ori-

onConnectorService, indirectly through the OrionFilterDirective, even
though the Orion classes belong to their own, different subsystem. This also
worsens maintainability since now changes in one subsystem potentially im-
pact other, unrelated subsystems. Additionally it increases the components’
complexity since they needs to be aware of all potential variations.

5.1.3 Refactored System

A refactoring to a more generic solution is required to address the decreased
maintainability and to achieve the design goal extensibility. The new, refac-
tored classes are modeled in Figure 5.2. In order to get rid of the static link
to Orion, we introduce a new directive, the ExtensionPointDirective. It
has two references to any component, a default component and an override
component. If the override is undefined, the default component is rendered,
otherwise the override is rendered. It also allows to pass any arbitrary context
to the override component. The directive is similar to Angular’s ngTempla-

teOutletDirective1, the difference being that Angular’s directive does not
support any default, it only either displays one component or nothing.

Instead of using the OrionFilterDirective, the CourseExerciseDe-

tailsComponent now only provides a generic extension point for the student
actions. It sets the default to the ExerciseDetailsStudentActions and
leaves the override undefined, displaying the regular Artemis components.
For Orion users a different component is created, the OrionCourseExer-

1 https://angular.io/api/common/NgTemplateOutlet

38

https://angular.io/api/common/NgTemplateOutlet

5.1. DECOUPLING ORION FROM ARTEMIS

ExerciseDetailsStudentActions

− exercise: Exercise
− startButton: Button
− continueButton: Button
− showUrlButton: Button
− openCodeEditorButton: Button

+ startExercise()
+ resumeProgrammingExercise()
+ repositoryUrl(p: Participation)

OrionExerciseDetailsStudentActions

− exercise: Exercise
− importParticipationButton: Button
− submitButton: Button

+ importParticipation()
+ submit()

CourseExerciseDetailsComponent

− exercise: Exercise
− problemStatement: Component
− result: Component

+ loadExercise()

OrionConnectorService

− isOrion: Boolean

+ importParticipation(e: Exercise)
+ submit()

ExtensionPointDirective

− context: Context

+ onChanges()

1

1

1

1

Component

1

2defaultComponent,
overrideComponent

CourseExerciseService

OrionCourseExerciseDetailsComponent
11

11

1

1

overrideStudentActions

1 1

override-
LinkAnd-
Editor-
Button

Figure 5.2: UML class diagram of the refactored implementation of the
CourseExerciseDetailsComponent and associated components and
services

ciseDetailsComponent. This component only displays the regular Course-
ExerciseDetailsComponent, but sets its extension point’s override to the
OrionExerciseDetailsStudentActions by injecting it using Angular’s con-
tent projection [Fre20, chapter 17]2. This triggers the extension point to
instead display the Orion buttons.

Similarly, the ExerciseDetailsStudentActions provide an extension
point to override the buttons to show the download URL or open the code
editor. The OrionExerciseDetailsStudentActions then display the reg-
ular actions but set the override to their own import and submit button.
They no longer need a copy of the start and continue buttons since it can
now reuse them from the regular actions.

This refactoring addresses both issues of the previous approaches: By pro-
viding generic extension points we remove the coupling between the regular
Artemis components and Orion. This is easily extendable, since any fu-
ture extending component can reuse the same extension points without any
changes. It also removes the duplication by allowing the Orion components
to easily reuse the shared code. Changes in Artemis’s components automa-
tically apply to the Orion components too, unless the extension point itself
is altered. The distinction between Orion users and normal users is now not
done by the components but instead by Angular’s router [Fre20, chapter 25-

2 see also https://angular.io/guide/content-projection

39

https://angular.io/guide/content-projection

CHAPTER 5. OBJECT DESIGN

27]3, which decides which of the components get displayed. This solution
with extension points, while only illustrated in one example in this section,
can be used throughout the client for every component Orion uses.

5.2 Preventing Invalid States

While loading new submissions or while starting IntelliJ, several operations
run simultaneously: users can open editors and already view files during the
initialization of Orion’s integrated browser. This could lead to erroneous
states if users manage to add feedback comments before the feedback from
Artemis has been loaded, potentially creating two different versions of feed-
back. This section describes how the implementation of the involved classes
ensures no such feedback conflict can happen.

The initialization of the relevant classes is shown in Figure 5.3 as a UML
communication diagram [BD09, p. 59] (also referred to as collaboration di-
agram [BRJ05, chapter 18]). Upon starting IntelliJ with an assessment
project, the IDE simultaneously starts creating the OrionBrowserService

and reopens all previously opened files, which, for files from the assessment,
also creates an OrionAssessmentEditor.

The editors are created first, due to the browser requiring more complex
initialization, which can take several seconds or more, depending on the sys-
tem load. At the end of initialization, the OrionAssessmentEditor queries
the OrionAssessmentService for inline feedback belonging to the opened
file. At this time, the service is not yet initialized and returns nothing. The
editor therefore skips the creation of its GutterIconController, disabling
the creation of new comments. Until the browser is loaded, reviewers can
view the files, but cannot interact with the assessment.

When the browser finishes its creation, it automatically loads the Orion-

TutorAssessment in the Artemis client. This component loads the current
feedback stored on the server and sends it to the OrionAssessmentService

via the Orion adapter as described in Section 4.3.1. The service initializes
its local feedback and afterwards requests all open OrionAssessmentEdi-

tors to reinitialize. The editors query the service again. This time, since the
feedback has been initialized, the service returns the correct feedback. The
editors display the feedback belonging to their opened file and initialize their
GutterIconController to enable reviewers to add new comments.

With this strategy we forced the parallel initialization into the correct
order by disabling the creation of new comments until synchronization with
Artemis is ensured. This prevents the system from reaching a problematic

3 see also https://angular.io/guide/router

40

https://angular.io/guide/router

5.2. PREVENTING INVALID STATES

:IntelliJ e1:OrionAssessmentEditor

:OrionBrowserService

:OrionTutorAssessment

:OrionAssessmentService

g1:GutterIconController

1.a: «create»

1.2: «create»

1.b: «create»

1.1: getFeedback()

1.3: initializeFeedback()

1.4: initializeFeedback()

1.5: getFeedback()

1.6: «create»

Figure 5.3: UML communication diagram of the initialization of the Orion
browser and Orion assessment editors.

state with the local feedback getting out of synchronization, potentially cre-
ating different, conflicting versions of the same feedback.

41

Chapter 6

Summary

We summarize our findings in this chapter by first listing the status of our
features in Section 6.1, describing our conclusions in Section 6.2 and giving
an outlook on future work in Section 6.3.

6.1 Status

This section describes the development status of all functional requirements
from Section 3.2.1 and nonfunctional requirements from Section 3.2.2. We
evaluate the status using the following scale:

 Implemented. The requirement is entirely fulfilled.

G# Partially Implemented. The requirement is only fulfilled partially
with some additional work required.

Not Implemented. The requirement is not fulfilled, future work is
necessary.

Table 6.1 lists the status of the functional requirements concerning how
to download and execute student submissions. The requirements are mostly
implemented. Reviewers can start their assessment in Orion with Orion
downloading and configuring the required repositories. They can then also
download submissions of students, view the code in IntelliJ, edit it, and ex-
ecute the automatic tests locally. Highlighting the student’s changes proved
to be more complicated than expected due to the limitations by IntelliJ and
had to be postponed. While the code is functional to also handle complaints
and more feedback requests, the GUI has not yet been adapted to enable it.

The status of the requirements for the manual assessment is listed in
Table 6.2. We enabled reviewers to view the problem statement, assessment

42

6.1. STATUS

Requirement Status
FR1.1 Start Assessment of Exercise
FR1.2 Assess Submission
FR1.3 View Code in IDE
FR1.4 Highlight Changes #
FR1.5 Edit and Execute Student’s Code
FR1.6 Support Feedback Requests and Complaints G#

Table 6.1: Status of the functional requirements regarding the download and
execution of student submissions

Requirement Status
FR2.1 View Problem Statement and Assessment Instructions
FR2.2 View Result
FR2.3 View Feedback
FR2.4 Add, Edit, and Delete Feedback G#
FR2.5 Save Assessment
FR2.6 Cancel Assessment
FR2.7 Use Structured Grading Instructions #

Table 6.2: Status of the functional requirements regarding the manual assessment
in Orion

instructions, result, and feedback in IntelliJ. Inline feedback is shown inline.
Reviewers are able to add, edit, and delete feedback comments in their IDE;
however, feedback can only be referencing a line or be general. We did not
manage to implement feedback referencing a file; this is also not yet supported
by Artemis. The assessment can be both saved and cancelled, similar to the
previous assessment workflow. We also did not manage to implement support
for Structured Grading Instructions (SGIs) in the given time.

We list the status of the nonfunctional requirements in Table 6.3. By
integrating the assessment process into the IDE, we managed to reduce the
amount of interactions required to execute the students’ code without rais-
ing the amount of interactions required to perform the assessment. The GUI
of the new components, most notably the inline assessment comments, looks
similar to the current GUI, with the current GUI shown in Figure 3.2 and the
new GUI displayed in Figure 3.11. We reused components provided by Intel-
liJ to ensure a consistent style. This, however, clashes with Artemis’s style.
Most notably, Artemis uses a bright background with dark text, whereas In-
telliJ also offers styles with dark background and bright text. Future work is
required to also offer such a style for Artemis with a different color scheme,

43

CHAPTER 6. SUMMARY

Requirement Status
NFR1.1 Usage Complexity (Start Assessment)
NFR1.2 Usage Complexity (Add Feedback Comment)
NFR1.3 GUI Consistency with Artemis
NFR1.4 GUI Consistency with IntelliJ G#
NFR2.1 Download Large Repositories
NFR2.2 Illegal Input
NFR3.1 Communication Artemis Client and Server
NFR3.2 Load Time
NFR3.3 Save Time

Table 6.3: Status of the nonfunctional requirements

which then needs to be integrated in Orion to ensure the colors fit in all
available color modes.

We fulfilled the required thresholds for reliability with the implementation
being able to handle the required repository size of 10 megabytes. Raising
that limit would require the download process to be rewritten to split the
data into smaller packages that are sent separately. By reusing the already
implemented components from Artemis, we also ensured feedback from Orion
is validated the same way, guaranteeing only valid feedback is stored. The
given performance requirements are also met with the operations being im-
plemented sufficiently lightweight to not cause notable additional delay.

6.2 Conclusion

By integrating manual assessment into Orion, we enabled reviewers to edit
and execute the students’ code immediately without requiring further down-
load or configuration. This allows reviewers to try out potential fixes for the
code and to receive an automatic test result for it at no additional effort.
This helps to accelerate the assessment process for faulty submissions as well
as to improve the feedback quality by increasing the reviewer’s understanding
of the submission.

We also integrated the ability to create, edit, and delete feedback com-
ments into Orion, enabling reviewers to perform manual assessment without
using any other program. We thereby eliminated the media disruption caused
by the previous assessment process.

We introduced a generic extension point directive into the Artemis client
to decouple Orion from Artemis while reusing the shared code. This improves
the maintainability of the code by eliminating code duplication as well as the

44

6.3. FUTURE WORK

extensibility by removing the coupling to Orion, allowing other, unrelated
systems to reuse the same extension points without further changes.

6.3 Future Work

With this thesis, Orion now supports the three mayor tasks of the program-
ming exercise workflow: creating exercises, solving exercises and assessing
exercises. Nonetheless, more features could further improve the user experi-
ence. Several suggestions are discussed in this section.

Support SGIs: As described in Section 6.1, we did not manage to imple-
ment SGIs in this thesis. Supporting them would, however, be very
helpful, since they enable reviewers to immediately use certain feed-
back comments without having to type them. This both accelerates
the assessment process and unifies the feedback by encouraging the re-
viewers to use the same feedback for all submissions. Support for SGIs
should work as described in FR2.7. The grading instructions should be
displayed in Artemis in Orion’s browser and it should be possible to
drag-and-drop them into feedback comments in Orion.

Refactor Orion Into Its Own Micro Frontend: While the refactoring
described in Section 5.1 does improve the decoupling of Orion’s and
Artemis’s subsystems in the Artemis client, it is not optimal. After the
refactoring, the Angular router [Fre20, chapter 25–27]1 has to decide
which component should be displayed. Currently, it just queries the
Orion Connector Service. While the coupling with Orion has been re-
moved from the components, it is now present in the router, which, due
to its decentralized nature with every module defining its own routes,
still creates a high coupling between Orion and many different routes.

In addition, Orion’s code is still part of the same modules as Artemis,
causing it to be sent to any client, even if they use a regular browser.
While the components don’t get displayed, they are still transferred,
costing performance. Further refactoring Orion into its own modules
and its own micro frontend would improve this by centralizing the de-
tection of Orion users. Lazily loading Orion only for users connecting
via Orion would ensure no unnecessary data from Orion is sent to users
connecting via a regular browser as well as completely decouple Orion
in the client.

1 see also https://angular.io/guide/router

45

https://angular.io/guide/router

CHAPTER 6. SUMMARY

Enable Other Programming Languages in Orion: Only Java2 is cur-
rently fully supported by Orion as programming language for program-
ming exercises. Artemis, however, at the time of writing of this thesis,
offers eight languages3. IntelliJ supports three of them: Java, Python4,
and Kotlin5. Additionally, Jetbrain’s CLion6, which is compatible with
Orion, offers support for C and Swift7. Ensuring compatibility of Orion
with these languages would enable non-Java courses to also use Orion.
In order to support a new language, the configuration of exercises needs
to be extended to select the correct environment and organize the files
according to the needs of the specific language.

2 https://www.java.com
3 https://github.com/ls1intum/Artemis/blob/091997fd53bfec901840242cddd8635

e984b1b95/src/main/java/de/tum/in/www1/artemis/domain/enumeration/Progra

mmingLanguage.java
4 https://plugins.jetbrains.com/plugin/631-python
5 https://plugins.jetbrains.com/plugin/6954-kotlin
6 https://www.jetbrains.com/clion
7 https://plugins.jetbrains.com/plugin/8240-swift

46

https://www.java.com
https://github.com/ls1intum/Artemis/blob/091997fd53bfec901840242cddd8635e984b1b95/src/main/java/de/tum/in/www1/artemis/domain/enumeration/ProgrammingLanguage.java
https://github.com/ls1intum/Artemis/blob/091997fd53bfec901840242cddd8635e984b1b95/src/main/java/de/tum/in/www1/artemis/domain/enumeration/ProgrammingLanguage.java
https://github.com/ls1intum/Artemis/blob/091997fd53bfec901840242cddd8635e984b1b95/src/main/java/de/tum/in/www1/artemis/domain/enumeration/ProgrammingLanguage.java
https://plugins.jetbrains.com/plugin/631-python
https://plugins.jetbrains.com/plugin/6954-kotlin
https://www.jetbrains.com/clion
https://plugins.jetbrains.com/plugin/8240-swift

Appendix A

Statistics of the TUM
Department of Informatics

The following table lists the number of students and research assistants at
the department of informatics at TUM according to their website1.

year
number of
students

number of
research assistants

number of students
per research assistant

2013 3555 395 9.0
2014 3815 407 9.4
2015 4240 392 10.8
2016 4744 397 11.9
2017 5399 397 13.6
2018 5986 408 14.7
2019 6458 454 14.2
2020 7444 480 15.5

Table A.1: Number of students and research assistants at the TUM Department
of Informatics from 2013 to 2020

1 https://www.in.tum.de/en/the-department/profile-of-the-department/fact

s-figures

47

https://www.in.tum.de/en/the-department/profile-of-the-department/facts-figures
https://www.in.tum.de/en/the-department/profile-of-the-department/facts-figures

List of Figures

2.1 Screenshot of the pull request overview of the GitHub plugin,
font size enlarged . 7

2.2 Screenshot of the review editor of the GitHub plugin, font size
enlarged . 7

3.1 Current System: Activity Diagram showing the general pro-
gramming exercise workflow with manual assessment enabled . 10

3.2 Current system: screenshot of the assessment view. The style
has been slightly adapted to avoid scroll bars. 12

3.3 Current System: Screenshot of IntelliJ with Orion from a stu-
dent’s perspective while solving an exercise 14

3.4 Current System: Screenshot of IntelliJ with Orion from an
instructor’s perspective while setting up an exercise 14

3.5 UML use case diagram displaying use cases associated with
downloading and executing the students’ submissions. Added
use cases are colored green. 21

3.6 UML use case diagram displaying use cases associated with
manual assessment in Orion. 23

3.7 UML class diagram depicting the analysis object model, based
on Young [lCY21, p. 33] . 24

3.8 UML activity diagram of the proposed assessment process . . 25

3.9 Proposed System: Screenshots of the exercise assessment dash-
board when connecting via Orion. 27

3.10 Proposed System: Screenshots of IntelliJ with Orion during
the assessment with the editor in edit mode. 28

3.11 Proposed System: Screenshots of IntelliJ with Orion during
the assessment with the editor in assessment mode. 28

4.1 UML component diagram of the general architecture of Artemis
and Orion adapted from Münch [Mü16, p. 44]. 30

48

LIST OF FIGURES

4.2 UML component diagram of the relevant parts of the Artemis
client. Added components are colored green, modified com-
ponents are colored blue. 32

4.3 UML component diagram of the relevant parts of the Orion
plugin. Added components are colored green, modified com-
ponents are colored blue. 34

4.4 UML deployment diagram of Artemis’s and Orion’s infrastruc-
ture, adapted from Ungar [Ung20]. Modified components are
colored blue. 35

5.1 UML class diagram of the previous implementation of the
CourseExerciseDetailsComponent and associated components
and services . 37

5.2 UML class diagram of the refactored implementation of the
CourseExerciseDetailsComponent and associated components
and services . 39

5.3 UML communication diagram of the initialization of the Orion
browser and Orion assessment editors. 41

49

List of Tables

3.1 Use Structured Grading Instructions as a use case detail de-
scription . 22

6.1 Status of the functional requirements regarding the download
and execution of student submissions 43

6.2 Status of the functional requirements regarding the manual
assessment in Orion . 43

6.3 Status of the nonfunctional requirements 44

A.1 Number of students and research assistants at the TUM De-
partment of Informatics from 2013 to 2020 47

50

Bibliography

[BBL16] Selim Buyrukoglu, Firat Batmaz, and Russell Lock. Increasing
the similarity of programming code structures to accelerate the
marking process in a new semi-automated assessment approach.
In 2016 11th International Conference on Computer Science Ed-
ucation (ICCSE), pages 371–376, 2016.

[BD09] Bernd Bruegge and Allen H Dutoit. Object Oriented Software
Engineering Using UML, Patterns, and Java. Prentice Hall, 2009.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Som-
merlad, and Michael Stal. Pattern-Oriented Software Architecture
– Volume 1: A System of Patterns. Wiley Publishing, 1996.

[BRJ05] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling
Language User Guide. Addison-Wesley object technology series.
Addison-Wesley, 2005.

[EKN+11] Emma Enstrom, Gunnar Kreitz, Fredrik Niemela, Pehr Soder-
man, and Viggo Kann. Five years with kattis – using an auto-
mated assessment system in teaching. In Proceedings of the 2011
Frontiers in Education Conference, FIE ’11, pages T3J-1–T3J-6,
USA, 2011. IEEE Computer Society.

[Elh20] Hanya Elhashemy. Structured grading criteria for the assessment
of exercises in artemis. Bachelor’s thesis, Technical University of
Munich, April 2020.

[Fre20] Adam Freeman. Pro Angular 9: Build Powerful and Dynamic
Web Apps. Apress, fourth edition, June 2020.

[GHJV07] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns – Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley professional computing series. Addison-
Wesley, Boston, 2007.

51

BIBLIOGRAPHY

[Gra92] Robert B. Grady. Practical Software Metrics for Project Manage-
ment and Process Improvement. Prentice-Hall, Inc., USA, 1992.

[GSS21] Florian Glombik, Johannes Stöhr, and Niclas Schümann. Improv-
ing the tutor experience in artemis. Bachelor’s thesis, Technical
University of Munich, August 2021.

[IS15] David Insa and Josep Silva. Semi-automatic assessment of unre-
strained java code: A library, a dsl, and a workbench to assess
exams and exercises. In Proceedings of the 2015 ACM Conference
on Innovation and Technology in Computer Science Education,
ITiCSE ’15, pages 39–44, New York, NY, USA, 2015. Associa-
tion for Computing Machinery.

[KS18] Stephan Krusche and Andreas Seitz. Artemis: An automatic
assessment management system for interactive learning. In Pro-
ceedings of the 49th ACM Technical Symposium on Computer
Science Education, SIGCSE ’18, pages 284–289, New York, NY,
USA, 2018. Association for Computing Machinery.

[lCY21] Francisco Javier De las Casas Young. Manual assessment of pro-
gramming exercises in artemis. Master’s thesis, Technical Uni-
versity of Munich, January 2021.

[Mon17] Josias Montag. Conducting interactive programming exercises in
online courses. Master’s thesis, Technical University of Munich,
April 2017.

[Mü16] Dominik Münch. Conducting interactive programming exercises
in large lectures. Master’s thesis, Technical University of Munich,
November 2016.

[Pie13] Vreda Pieterse. Automated assessment of programming assign-
ments. In Proceedings of the 3rd Computer Science Education
Research Conference on Computer Science Education Research,
CSERC ’13, pages 45–56, Heerlen, NLD, 2013. Open Universiteit,
Heerlen.

[Ung20] Alexander Ungar. Development of an ide plugin for artemis. Mas-
ter’s thesis, Technical University of Munich, February 2020.

[ZKF11] Daniel M. Zimmerman, Joseph R. Kiniry, and Fintan Fair-
michael. Toward instant gradeification. In 2011 24th IEEE-
CS Conference on Software Engineering Education and Training
(CSEE T), pages 406–410, 2011.

52

	Introduction
	Problem
	Motivation
	Objectives
	Outline

	Related Work
	Requirements Analysis
	Current System
	Artemis's Programming Exercise Workflow
	Artemis Manual Assessment Workflow
	Orion

	Proposed System
	Functional Requirements
	Nonfunctional Requirements

	System Models
	Scenarios
	Use Case Model
	Analysis Object Model
	Dynamic Model
	User Interface

	System Design
	Overview
	Design Goals
	Subsystem Decomposition
	Client Decomposition
	Orion Decomposition

	Hardware/Software Mapping

	Object Design
	Decoupling Orion from Artemis
	Overview
	Current Approach
	Refactored System

	Preventing Invalid States

	Summary
	Status
	Conclusion
	Future Work

	Statistics of the TUM Department of Informatics

