
FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatik

Teaching Analytics in Artemis

Dominik Fuchs

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatik

Teaching Analytics in Artemis

Lehranalytik in Artemis

Author: Dominik Fuchs

Supervisor: Prof. Dr. Bernd Brügge

Advisor: Dr. Stephan Krusche

Date: 15. April 2021

I confirm that this bachelor’s thesis is my own work and I have documented
all sources and material used.

Munich, 15. April 2021 Dominik Fuchs

Abstract

Learning Management Systems become more and more relevant in mod-
ern teaching. One disadvantage of these systems is the lack of direct student
feedback, which is normally created by the interaction between the student
and the instructor during the lecture. Teaching analytics is a research field
which thematizes this issue and focuses on enhancing the teaching quality by
collecting, analyzing and presenting student performances in the course.

Artemis in its current state does not provide course analytics for instruc-
tors. Instructors are unable to get a deeper insight into the intermediate state
of the course, which prevents them from dynamically adapting the lecture
and exercises according to the students’ weaknesses and strengths. Through
this thesis, we want to address this problem and expand Artemis in a way
that allows instructors to gather more information about the status of their
students. We integrate new analytical functionalities on 3 levels:

First, we refactor an existing course management page in order to provide
instructors with early access to the most relevant course analytics. Second,
we present a course detail page which extends the information shown in the
aforementioned page with additional data. Third, we introduce several new
statistics pages to Artemis, which provide administrators with server-wide
analytics and instructors with statistics regarding the overall course, exer-
cises, exams and lectures, that they can use to optimize the course quality.

Zusammenfassung

Lernmanagement-Systeme gewinnen in der modernen Lehre immer mehr
an Bedeutung. Ein Nachteil dieser Systeme ist das Fehlen von direktem Stu-
dentenfeedback, das normalerweise durch die Interaktion zwischen dem Stu-
denten und dem Dozenten während der Vorlesung entsteht. Lehranalytik
ist ein Forschungsfeld, das diese Problematik thematisiert und sich darauf
konzentriert, die Qualität der Lehre durch das Sammeln, Analysieren und
Darstellen von studentischen Leistungen in der Lehrveranstaltung zu verbes-
sern.

Artemis bietet in seinem aktuellen Zustand keine Kursanalyse für Dozen-
ten. Dozenten sind nicht in der Lage, einen tieferen Einblick in den Zwischen-
stand des Kurses zu bekommen, was sie daran hindert, die Vorlesung und die
Übungen dynamisch an die Schwächen und Stärken der Studenten anzupas-
sen. Mit dieser Arbeit wollen wir dieses Problem adressieren und Artemis so
erweitern, dass Dozenten mehr Informationen über den Status ihrer Studen-
ten erhalten können. Wir integrieren neue analytische Funktionalitäten auf
3 Ebenen:

Erstens überarbeiten wir eine bestehende Kursverwaltungsseite, um Do-
zenten einen frühen Zugriff auf die relevantesten Kursanalysen zu ermöglichen.
Zweitens präsentieren wir eine Kursdetailseite, die die auf der oben genann-
ten Seite angezeigten Informationen um zusätzliche Daten erweitert. Drittens
führen wir mehrere neue Statistikseiten in Artemis ein, die Administratoren
mit serverweiten Analysen und Dozenten mit Statistiken zum gesamten Kurs,
zu Übungen, Prüfungen und Vorlesungen versorgen, die sie zur Optimierung
der Kursqualität nutzen können.

Contents

1 Introduction 2

1.1 Problem . 3

1.2 Motivation . 4

1.3 Objectives . 5

1.4 Outline . 6

2 Related Work 7

2.1 edX Insights . 7

2.2 Canvas . 12

3 Requirements Analysis 16

3.1 Overview . 16

3.2 Current System . 16

3.3 Proposed System . 19

3.3.1 Functional Requirements 20

3.3.2 Nonfunctional Requirements 22

3.4 System Models . 23

3.4.1 Scenarios . 24

3.4.2 Use Case Model . 25

3.4.3 Analysis Object Model 28

3.4.4 User Interface . 30

4 System Design 38

4.1 Overview . 38

4.2 Design Goals . 39

4.3 Subsystem Decomposition . 40

5 Object Design 43

5.1 Statistics . 43

ii

6 Summary 46
6.1 Status . 46

6.1.1 Realized Goals . 46
6.1.2 Open Goals . 49

6.2 Conclusion . 49
6.3 Future Work . 49

iii

TA Teaching Analytics

LA Learning Analytics

LMS Learning Managenemt System

TUM Technical University Munich

GUI Graphical User Interface

API Application Programming Interface

CI Continuous Integration

VC Version Control

CSS Cascading Style Sheets

SCSS Sassy CSS

HTML Hypertext Markup Language

REST Representational State Transfer

UML Unified Modeling Language

ML Machine Learning

1

Chapter 1

Introduction

Teaching analytics (TA) is a term with increasing relevance in modern classes.
To understand the meaning and origin of TA, we need to give two definitions.
First, we define the broader term learning analytics (LA), where TA is derived
from:

”Learning analytics is the measurement, collection, analysis, and
reporting of data about learners and their contexts, for under-
standing and optimizing learning and the environments in which
it occurs” [Sie13].

Second, we describe teaching analytics:

”Teaching analytics is the application of learning analytics tech-
niques to understand teaching and learning processes, and even-
tually enable supportive interventions” [PSDJ16].

TA as a subcategory of LA specializes on enhancing the teaching quality by
analyzing student performances in the course.

Prior to this trend, face-to-face communication between students and
teachers made it difficult to generate meaningful data, as there is no digital
footprint and therefore only the fraction of interactions that took place online
can be taken into account by analytics tools. The reason for the rising
demand for TA functionalities is the establishment of Learning Management
Systems (LMS) into higher education [Sie13, KTKK12]. Artemis is one of
a few LMS which the Technical University Munich (TUM) uses to provide
online teaching to students and has therefore aspects which can be used to
apply teaching analytics [KS18].

In Artemis, instructors are able to create courses, which contain lectures,
exercises and exams. For lectures, instructors can either upload files for the
students to download or directly create text or link videos for the students

2

1.1. PROBLEM

to view. Regarding exercises and exams, instructors have the possibility to
create problems which the student needs to solve in a defined amount of
time. Artemis offers text-, modeling, file-upload and programming exercises
on which the student can work directly in the application. Artemis also
manages the subsequent assessment of student submissions by tutors.

Altogether, instructors are able to apply an interactive learning approach
that also generates a large amount of data and is well suited for analytical
purposes [KvFA17].

1.1 Problem

When a lecturer interacts with 20 to 30 students in the lecture hall and
corrects the assignments himself, he gets to see very quickly how well the
students understand the content. In the case of the computer science course
“Introduction to Software Engineering” at the Technical University of Mu-
nich in the summer semester of 2021, a lecturer supervises more than 2000
students online. This poses new challenges, as the docent has to delegate
responsibilities to tutors, no longer has direct student contact and therefore
has difficulty overlooking students and their current status in the course.

Figure 1.1 displays an example: Students receive an average score of
approximately 90 percent in exercise 1 and exercise 2, however, obtain an
average score of 30 percent in another exercise 3. Due to the distribution of
assessment to the tutors, instructors do not have insights into these results
and therefore will not detect this issue. What instructors need are analytics
regarding the students’ performances.

Artemis in its current version does not offer such opportunities, neither
for courses nor exercises. We will elaborate more on what the instructor
can see at the moment in Section 3.2. The lack of analytical data prevents
instructors from dynamically adapting the lecture and exercises according to
the students’ weaknesses and strengths. As a result, students are less likely
to compensate their weaknesses and knowledge gaps emerge.

3

CHAPTER 1. INTRODUCTION

Figure 1.1: Scenario where students achieve a bad average score in one of three
exercises

1.2 Motivation

Integrating learning analytics tools has proven to be an effective way to
enhance student learning [OC12,Won17]. By introducing Artemis to teaching
analytics approaches, instructors can also benefit by gaining detailed insight
into students learning process that can be used to adapt the lecture and
improve course quality [SL11].

Artemis is well suited for such an approach as it provides a large database
with around 2000 carried out exercises, approximately 100 courses and nearly
15 000 users with about 2 million submissions in total. In the following, we
explain how we want to approach the problems described in Section 1.1.

Improve and simplify course overview
By collecting, analyzing and visualizing relevant, course related information,
we improve the transparency of the course for tutors and instructors while
easing and optimizing the course management.

Provide independent, automated feedback for instructors
Instructors should have the possibility to receive course feedback at any time.
As feedback can often be subjective, we want to use student results as a
credible base of the analysis and provide instructors with result analytics
which are independent of direct student feedback.

Improve student results
Instructors should be able to access in-depth analytics concerning different

4

1.3. OBJECTIVES

aspects of the course. This helps to identify weaknesses of students that are,
for instance, indicated by a low average score in a particular exercise. The
instructors can reduce deficiencies by further practice in this particular field.
The improved student comprehension lowers the number of students at-risk,
reduces drop-out rates and improves student grades.

1.3 Objectives

The goal of this thesis is to introduce teaching analytics practices, which
are helpful for instructors to get a deeper insight into the students results.
Analytics are best presented by visualizations. We want to display statistics
in different levels of analytical intensity so the instructor is able to choose
how detailed the analysis should be. We derive 3 main objectives for our
thesis:

Goal 1: Early and basic analytics for a quick overview of the
course
Instructors should be able to get a brief insight into the most relevant infor-
mation regarding the course. Therefore, we refactor the course management
overview, which is the first contact point for instructors and add essential
analytics visualizations.

Goal 2: More detailed statistics about the course with extended
functionality
On the basis of goal 1, an instructor should have the possibility of gaining
even deeper insights. In a re-iterated course management detail page, we
build upon the metrics1 shown in the new course management overview and
extend the functionality so the instructor is able to get an more detailed
analysis.

Goal 3: Elaborated statistics for specific course content
In order to get an in-depth look into specific course related entities, we want
to supply the instructor with detailed knowledge about every little detail
concerning the course. To achieve that, we provide elaborated statistics
regarding the course, exercises, lectures and exams. As it is relevant for
administrators how excessively Artemis is utilized by users, we treat Artemis
as an entity and provide Artemis-spanning analytics.

1A metric is a quantifiable measure that is used to track and assess the status of a
specific process (https://www.klipfolio.com/blog/kpi-metric-measure). In this particular
context, a metric is a measurable information about the course

5

CHAPTER 1. INTRODUCTION

1.4 Outline

As described in [BD09], the outline of this thesis corresponds the main soft-
ware development activities:

Chapter 2 Related Work uses comparable Learning Management Sys-
tems to demonstrate already existing teaching analytics aspects.

Chapter 3 Requirements Analysis summarizes the current system in
terms of teaching analytic practices, accumulates and analyzes the require-
ments of the proposed system and provides system models to further evaluate
the requirements according to the Analysis Document Template by Brügge,
et al. [BD09].

Chapter 4 System Design follows the System Design Document Tem-
plate in [BD09] and shows how the requirements are realized on the system
design level.

Chapter 5 Object Design elaborates on how statistics are implemented
into the proposed system.

Chapter 6 Summary recaps the implemented goals of this thesis and
which requirements the implementation fulfills. Furthermore, we discuss po-
tential future work on this topic.

6

Chapter 2

Related Work

In this chapter we highlight how other systems integrate teaching analytics.
We demonstrate different visualization techniques and show in which way
Artemis differs from them but also how Artemis uses similar approaches to
solve the issues that arose in Section 1.1.

2.1 edX Insights

edX is one of the biggest Learning Management Systems worldwide with over
110 million enrollments1. Founded and developed by Harvard University and
Massachusetts Institute of Technology, it is utilized by many universities,
including the Technical University of Munich, and runs on the open-source
software Open edX. edX Insights is an administration tool introduced by
this particular platform. It provides instructors with information about their
courses and its learners. Metrics provided by edX Insights are for example
the number of course enrollments, the engagement with course content or
submission related information like the number of correct submissions by
students2.

Weekly Learner Engagement

Figure 2.1 shows a line graph regarding the weekly learner engagement of
a course. The graph counts the number of users for different aspects of
content interactions. Four different metrics are shown on a weekly basis.

1https://www.classcentral.com/report/edx-top-1000-website/,https://
press.edx.org/edx-passes-110-million-total-global-enrollments-up-29-million-year-over-year

2https://edx.readthedocs.io/projects/edx-insights/en/latest/Overview.

html

7

https://www.classcentral.com/report/edx-top-1000-website/
https://press.edx.org/edx-passes-110-million-total-global-enrollments-up-29-million-year-over-year
https://press.edx.org/edx-passes-110-million-total-global-enrollments-up-29-million-year-over-year
https://edx.readthedocs.io/projects/edx-insights/en/latest/Overview.html
https://edx.readthedocs.io/projects/edx-insights/en/latest/Overview.html

CHAPTER 2. RELATED WORK

These are the number of active users, the amount of user who watched a
video, the amount of users who tried a problem and the number of users who
participated in discussions. edX defines the number of active users as those
who visited a course page at least once. The number of students who tried a
problem are the ones who submitted at least one submission for a problem
in this particular week. A participation in a discussion can be, for instance,
a post, a response or a comment.

With regard to Artemis, we define terms differently. As Artemis currently
cannot track the pages a user visited in a session, we define an active user
as a person who actively participated in the course by handing in a submis-
sion. The number of active users and number of discussion participations are
metrics we will also address in Artemis.

Figure 2.1: The Weekly Learner Engagement of a course in edX Insights3

Engagement with course videos

Another possibility for instructors to improve lecture content is to analyze the
students’ engagement with course videos [HPM+20]. edX Insights provides
multiple statistics regarding this. The bar chart in Figure 2.2 visualizes the
number of views of all videos in a course section. The bar itself is divided
into the amount of completed views, shown in green, and the number of
incomplete views, shown in gray. A view counts as completed if the user

3https://help.appsembler.com/article/312-viewing-engagement-data-in-open-edx-insights

8

https://help.appsembler.com/article/312-viewing-engagement-data-in-open-edx-insights

2.1. EDX INSIGHTS

watches the whole video. edX Insights provides additional information below
the graph. In a list, the instructor can see the title of the section together
with the number of videos, the average number of complete and incomplete
views of those videos and the completion rate in percentage.

If instructors want to investigate the origin for a high incompletion rate
of views, there is the possibility to navigate into a specific section in order
to inspect subsections as well as concrete videos to find out which lectures
need to be improved in the future.

Figure 2.2: Video views grouped by course sections in edX Insights

9

CHAPTER 2. RELATED WORK

As instructors are experienced in their area of proficiency and students in
lecture usually have many different levels of competence, it can happen that
students do not understand things the instructor explained. An advantage of
Learning Management Systems is the possibility to rewatch videos. It can be
relevant for instructors which lecture parts students did not understand as
they should improve those and either explain the content in simpler terms or
elaborate on the subject in more detail. edX Insights is able to detect parts
of videos which students watched more than once, as seen in Figure 2.3.

Figure 2.3: Video frames which are viewed more than once, highlighted in dark
blue4

To improve lecture quality even further, instructors in edX Insights can
identify at which point students stop watching the lecture. Figure 2.4 dis-
plays a steadily decreasing number of student views, which indicates that the
instructor looses the students’ attention and should work on the quality of
the lecture in order to optimize student performance [Pur07].

In contrary to edX Insights, Artemis lacks video analytics offerings for
instructors. Since edX provides its own video player, there are more possibil-
ities to gather data. In Artemis, it is possible to embed videos into a lecture
by providing a video URL [Wal21]. However, we currently do not collect any
data regarding student views.

4https://edx.readthedocs.io/projects/edx-insights/en/latest/engagement/

Engagement_Video.html
5https://edx.readthedocs.io/projects/edx-insights/en/latest/engagement/

Engagement_Video.html

10

https://edx.readthedocs.io/projects/edx-insights/en/latest/engagement/Engagement_Video.html
https://edx.readthedocs.io/projects/edx-insights/en/latest/engagement/Engagement_Video.html
https://edx.readthedocs.io/projects/edx-insights/en/latest/engagement/Engagement_Video.html
https://edx.readthedocs.io/projects/edx-insights/en/latest/engagement/Engagement_Video.html

2.1. EDX INSIGHTS

Figure 2.4: Number of video views slowly declining as students stop to watch
the lecture5

Student submission analytics

In regards to submission analytics, edX Insights has similar constraints as
the current Artemis version. A limitation of edX are the number of exercise
types, where the only ones with analytical support are Checkbox, Dropdown,
Multiple Choice, Numerical Input and Text Input problems6. For those, edX
Insights provides statistics regarding the distribution of correct and wrong
answers as well as the content of those, showcased in Figure 2.5. There is
the possibility to create custom exercise types through a plugin architecture,
called XBlock [Le16]. However, edX Insights does not support analytics for
those exercises.

Artemis in its current state supports analytics for quiz exercise [Iss18],
but not for modeling, text, file-upload or programming exercises, which we
address with the proposed system. The complexity of problem statements
and their answer limits us in revealing insights into the content of submis-
sions. Taking text exercises as an example, it is currently not practical to
visualize submission content due to the length and variety of different stu-
dent submissions.

6https://edx.readthedocs.io/projects/edx-partner-course-staff/

en/latest/exercises_tools/create_exercises_and_tools.html#

common-problem-types
7https://edx.readthedocs.io/projects/edx-insights/en/latest/

performance/Performance_Answers.html

11

https://edx.readthedocs.io/projects/edx-partner-course-staff/en/latest/exercises_tools/create_exercises_and_tools.html#common-problem-types
https://edx.readthedocs.io/projects/edx-partner-course-staff/en/latest/exercises_tools/create_exercises_and_tools.html#common-problem-types
https://edx.readthedocs.io/projects/edx-partner-course-staff/en/latest/exercises_tools/create_exercises_and_tools.html#common-problem-types
https://edx.readthedocs.io/projects/edx-insights/en/latest/performance/Performance_Answers.html
https://edx.readthedocs.io/projects/edx-insights/en/latest/performance/Performance_Answers.html

CHAPTER 2. RELATED WORK

Figure 2.5: Submissions analytics of a text input problem in edX7

2.2 Canvas

Canvas is a cloud-based Learning Management System with integrated teach-
ing analytics practices [TM18]. The platform provides instructors with a
large variety of functionalities, similar to the ones we integrate in our pro-
posed system.

In Figure 2.6 we demonstrate how Canvas visualizes different average
grades in a course. Below the general course average grade (1), Canvas
displays a dot chart (2) containing the average grades of different exercises.
The site allows the instructor to filter for specific exercise types (3) as well
as specific course sections and students (4).

8https://community.canvaslms.com/t5/Canvas-Basics-Guide/

What-is-New-Analytics/ta-p/73

12

https://community.canvaslms.com/t5/Canvas-Basics-Guide/What-is-New-Analytics/ta-p/73
https://community.canvaslms.com/t5/Canvas-Basics-Guide/What-is-New-Analytics/ta-p/73

2.2. CANVAS

Figure 2.6: The course average score in canvas8

13

CHAPTER 2. RELATED WORK

Canvas has additional metrics regarding course interactions. As we show
in Figure 2.7, the instructor gets further in-depth insights into courses. An
instructor is able to see when students interact with the course in terms
of page views and participations (1). The Submissions graph (2) provides
the instructor with information regarding submissions in each course exer-
cise. Submissions can additionally differ between on time, late and missing
submissions from students.

As the average score in Figure 2.6 does not reflect the grade distribution
among the students, Canvas provides an additional statistic visualizing this
data. The Grades chart (3) lets instructors evaluate whether there is a
noticeable large gap between good and bad performing students or whether
the majority of students achieved grades close to the average. This can be
useful for lecture evaluations, as a large amount of bad performing students
could imply a weak point in the lecture, even if many students acquired good
grades as well.

Canvas extends the analytical input for instructors by providing the afore-
mentioned metrics for each individual student (4). This includes pages views,
participations, submissions and the current score. Especially the average
score and the possibility of sorting allows the instructor to identify students
at-risk which is an important step in improving student results.

Canvas’ analytics share some similarity with the statistics we integrate
in the proposed system. As the average score and the other previously men-
tioned datasets are fundamental indications for course weaknesses, we provide
the majority of these metrics to the instructor in Artemis. A limitation that
we currently face in Artemis is the fact that the system does not track which
pages the user visits. Since this is not in the scope of our work due to time
reasons, we can not visualize page views to the instructor.

9https://a6199-661633.cluster76.canvas-user-content.com/courses/

6199~20914/files/6199~661633/course%20files/Embedding/Learning%

20Analytics/CanvasCommunityCanvasAnalyticswhatis.htm?download=1&inline=1

14

https://a6199-661633.cluster76.canvas-user-content.com/courses/6199~20914/files/6199~661633/course%20files/Embedding/Learning%20Analytics/CanvasCommunityCanvasAnalyticswhatis.htm?download=1&inline=1
https://a6199-661633.cluster76.canvas-user-content.com/courses/6199~20914/files/6199~661633/course%20files/Embedding/Learning%20Analytics/CanvasCommunityCanvasAnalyticswhatis.htm?download=1&inline=1
https://a6199-661633.cluster76.canvas-user-content.com/courses/6199~20914/files/6199~661633/course%20files/Embedding/Learning%20Analytics/CanvasCommunityCanvasAnalyticswhatis.htm?download=1&inline=1

2.2. CANVAS

Figure 2.7: Course Analytics in Canvas9

15

Chapter 3

Requirements Analysis

We base this section on [BD09] and introduce two aspects of software devel-
opment, requirements elicitation and requirements analysis. Both are of high
importance in order to create a well defined basis for the upcoming chapters.
First, we give a short overview on how the proposed system improves the
quality of the current system. Second, we summarize what the current sys-
tem is able to do in terms of teaching analytics aspects. Third, we provide
UML system models in order to further specify the proposed system.

3.1 Overview

Like already mentioned in Section 1.2, we want to improve the instructors
possibilities to overlook the course. As instructors currently have only very
little insights into the students achievements, we want to integrate various
statistics into Artemis that will help instructors evaluate the current status of
the course and their students. These statistics are grouped into single views
to provide relevant information about the students progress in exercises, the
workload that lies on them and how well they do in those exercises.

Furthermore, we want to provide a stepwise information illustration,
which means that instructors should be able to acquire very basic information
about the course status very early on, while also being able to specifically
collect course related metrics on a deeper level.

3.2 Current System

We specify Artemis version 4.7.6 as the current Artemis version.

16

3.2. CURRENT SYSTEM

Statistics

As mentioned in Section 1.1 an instructor has only little opportunities to
gather course information. An instructor can navigate into the instructor
course dashboard to obtain basic information about the system, like shown in
Figure 3.1. The view displays information concerning the course status, like
the assessment progress. What is missing, however, are deeper insights into
the students’ achievements, as for example an average score that indicates
how well the students did in finished exercises. The instructor should be able
to have more insight into the assessment process as well, for instance whether
tutors almost failed to assess all submission in time or whether they easily
assessed all submission days before assessment due date.

Figure 3.1: Instructor Course Dashboard in the current Artemis version

Another possibility for instructors is to access the instructor exercise
dashboard, displayed in Figure 3.2. This interface shows the instructor some
information regarding an exercise, like assessments and submissions. It is im-
portant to know how many assessments are done, but again a time constraint
is missing.

Course Management

In the current system the course management overview is mainly used for
navigational purposes. As seen in Figure 3.3, Artemis displays courses in a
list, displaying basic information and providing links for tutor and instructor
navigation.

17

CHAPTER 3. REQUIREMENTS ANALYSIS

Figure 3.2: Instructor Exercise Dashboard in the current Artemis version

Figure 3.3: The course management overview in the current system

18

3.3. PROPOSED SYSTEM

The current course management detail view as depicted in Figure 3.4
builds upon the data shown in the course overview and extends the displayed
data by further aspects. Instructors can use this interface to examine basic
course information and to navigate into tutor and instructor pages.

Figure 3.4: Current course management detail page as instructor

3.3 Proposed System

In the proposed system, the instructor is able to utilize many new metrics
to improve course progress tracking. We introduce newly added metrics like
average student score and the number of active users, which the user can
view very fast by looking at the refactored course management overview as
well as statistics like number of logged-in users, active tutors or conducted
exams, which the instructor can observe by accessing one of the newly added

19

CHAPTER 3. REQUIREMENTS ANALYSIS

statistics views. In the proposed system, we introduce Artemis-wide user
statistics, course-ranging course statistics, exercise-wide exercise statistics as
well as exam statistics and lecture statistics.

As mentioned in the overview, we want to provide early access to course
statistics in the course management overview. However, through the course
management detail page, the instructor is able to extend the overview’s visu-
alizations and therefore obtain more knowledge on exercises and the students
progress.

There is a defined hierarchy structure in Artemis. There are students,
tutors, instructors and administrators. Students are not involved in course
management and are therefore not relevant for this thesis. As tutors have
the least privileges out of the management roles, an instructor can do ev-
erything a tutor is able to do for the respective course plus additional rights
regarding instructor-related responsibilities. An administrator monitors the
entire web application and has therefore instructor rights for each course plus
additional permissions to overlook the server. With that in mind, declaring
functionalities for tutors in the following sections applies for instructors as
well and features for instructors also apply for administrators.

The following subsections list the functional and nonfunctional require-
ments of the proposed system, originated from the user’s perspective.

3.3.1 Functional Requirements

This subsection lists the functional requirements (FRs) of the proposed sys-
tem. [BD09] describes FRs as the interaction between the system and its
environment, whereas an environment in this particular context is depicted
as the user and other external systems. The FRs are independent of their
actual implementation.

First, we introduce the FRs for newly added statistics in Artemis. Sec-
ondly, we demonstrate FRs for the refactored course management and after
that state specific FRs for the course management overview and course man-
agement detail view.

Statistics

These FRs are aiming to define possible user interactions with statistics
views. The general idea and outline of those are present multiple times
in the scope of Artemis, for example as user statistics, the course statistics
or as exercise statistics.

20

3.3. PROPOSED SYSTEM

FR1 Open global Artemis statistics: An administrator can open differ-
ent Artemis-related statistics like number of logged-in users and active
users, amount of conducted exams and metrics about exercises and
exams.

FR2 Open course statistics: Tutors are able to open different course
statistics concerning their course (number of active users, tutor ratings,
the average student score in the course and in different exercises and
statistics about exams).

FR3 Access exercise statistics: A tutor is capable of opening different
exercise statistics for each exercise like the number of active students,
the average student score or the students’ score distribution.

FR4 Open exam statistics: A tutor can open different statistics (aver-
age student score, grade distribution and number of registrations and
participations) about an exam.

FR5 Access lecture statistics: An instructor can open different lecture
statistics about questions asked and the students’ progress in lecture
videos and notes.

Course management

For the course management, we want to refactor multiple views in order to
give them more relevance in the workflow. Both the course management
overview and the course management detail view should display more data
so that the user does not need to access several subpages to acquire the
information. These two types of views share some similar functionalities.

FR6 View active users: The tutor can see how many students actively
participated in the course.

FR7 View exercises: The tutor can see a list of exercises from the course

FR8 View exercise progression: The tutor can see the progression in
an exercise (number of exercise participations, amount of assessed and
unassessed submissions).

FR9 View average score of exercise: The tutor can view the average
score of an exercise

21

CHAPTER 3. REQUIREMENTS ANALYSIS

Course management overview

The course management overview gives an outline over the courses the user
has access to. This view can be accessed, if the user holds tutor or instructor
rights for at least one course.

FR10 View every accessible course: To have a quick outline over every
accessible course, the user can see courses where he holds at least tutor
rights arranged among each other.

Course management detail view

Through this thesis, we refactor the course management detail view, which
currently only shows basic course information and is used only very rarely. By
displaying more interesting information, this view is integrated more deeply
into the instructor’s workflow.

FR11 Open tutor statistics: A tutor can open statistics (the assessment
progress and the number of addressed and not addressed complaints
and more feedback requests) about the course.

FR12 View average score in course: A tutor is able to see the students’
current average score in the course.

FR13 Search for exercise: A tutor is able to manually search for a specific
exercise

3.3.2 Nonfunctional Requirements

We list the nonfunctional requirements (NFRs) which, in contrast to the
functional aspects mentioned above, lay down quality requirements of the
proposed system. We categorize according to the URPS1 model, which is
described in [BD09] and is also used in the Unified Process in [JBR99].

With regards to the data which has to be processed, we define a reference
value of a course as one with 2000 students, 40 exercises and corresponding
participations and submission from these students.

1URPS, derived from FURPS+, constitutes an acronym using the first letter of each
spect of the model: Functionality, Usability, Reliability, Performance and Supportability.
The + stands for any additional subcategories that may arise

22

3.4. SYSTEM MODELS

Statistics

NFR1 Performance - Response time: All data should be displayed within
4 seconds after accessing the page

NFR2 Supportability - Extensibility: If new requirements occur, a devel-
oper can easily add new graphs without having to create new classes.

NFR3 Reliability - Security: At no time should there be any information
about students achievements on the client

Course management overview

NFR4 Usability - Efficiency: After logging into Artemis, the user can ac-
cess the course exercises in 2 interactions via the course management
overview

NFR5 Performance - Response time: When accessing the course manage-
ment overview, the course information is displayed in 2 seconds

NFR6 Usability - Learnability: Every button without a description has a
tooltip which explains the buttons usage

NFR7 Supportability - Adaptability: The system adapts to different screen
sizes

Course management detail view

NFR8 Performance - Response time: When accessing the course manage-
ment detail view, the course information is displayed in 2 seconds

3.4 System Models

In this section we demonstrate through different system models how we in-
tegrate the innovations into the planned system. This is still independent of
its concrete implementation and aims to give a better understanding of the
interactions between the components among each other as well as how the
user interacts with the system.

23

CHAPTER 3. REQUIREMENTS ANALYSIS

3.4.1 Scenarios

In the following, we provide two scenarios, which are an informal and very
concrete descriptions of a system’s feature from the viewpoint of an actor
[BD09]. First, we demonstrate a demo scenario, which focuses on innovations
proposed by this thesis. Second, we show a potential futuristic feature of this
system, which is however not feasible during this thesis.

Demo Scenario: Evaluating an informal student complaint as an
instructor

The instructor Alice and her tutors have their weekly meeting, discussing
the next week’s schedule of the course ”Software Engineering for Beginners”,
carried out in Artemis. Bobby, a tutor, mentions that his students recently
complained in his weekly tutorial that the latest modeling exercise, ”Bridge
Patterns in the real world” was too difficult. After the meeting, Alice wants
to make sure whether these statements are wrong or justified. She navigates
to the course management detail page in order to figure out the average
student’s score in her course, which amounts to 78%. This means that the
average student achieved 78% of the maximum points currently reachable in
the course.

After this, Alice opens the course statistics page where she can find the
average students score for every single exercise. The value for this particular
exercise equals 85%.

Alice concludes that the accusations, the exercise ”Bridge Patterns in the
real world” would be too hard are incorrect. Because the specific exercise
average score is actually higher than the overall course score, Alice decides
to not make any changes in her following lectures.

Visionary Scenario: Detecting potential lack of time for assessment

The Artemis course ”Patterns in Software Engineering” consists of several
weekly assignments, which the students have to hand in until Sunday mid-
night. The assessment of those exercises takes place in the following week,
where the students work on the next tasks and the tutors mark the latest
submissions.

Harry, the instructor of the course, can usually focus on preparing new
lectures and creating new exercises. Currently, it’s the 6th week into the
semester and Harry’s tutors have some time shortage due to midterm exams,
which take place in other lecture they attend. As a result, the tutors only
managed to do circa 50% of the assessments they usually do until now. On
Thursday evening, 3 days before the assessment due date, Artemis discovers

24

3.4. SYSTEM MODELS

that only 60% of the assessment is done. Because statistically only 20 to 30%
of the assessments are done on the weekend, Artemis automatically sends
the instructor a notification, warning about the lack of assessments. Artemis
provides the prediction that only 80% of the submissions will be graded until
the assessment due date, which would result in students receiving delayed
feedback and therefore a shorter preparation time for upcoming exercises
and lectures.

Harry perceives the notification and messages the tutors in their usual
communication tool, that they need to speed up the assessment process.
In the following days, the tutors organize assessment sessions where they are
able to resolve issues immediately and therefore finish the exercise assessment
until Sunday afternoon.

3.4.2 Use Case Model

In the next subsection we want to visualize the FRs proposed in Section 3.3.1
using use case diagrams. We define the therein contained use cases according
to [BD09]. The actors in this particular case are limited to tutors, instructors
and administrators, since these are the roles in Artemis we focus on in this
thesis.

Statistics

Figure 3.5 displays the use cases for opening statistics in Artemis. A tutor
can open different exam statistics, course statistics as well as exercise statis-
tics. Referring to the annotation at the beginning of Section 3.3, this implies
that these interactions with the tutor are also possible for instructors and
administrators. An instructor can additionally open several lecture metrics,
as the lecture management is only accessible for instructors and not for tu-
tors. A functionality exclusively for administrators is the access to the user
statistics.

25

CHAPTER 3. REQUIREMENTS ANALYSIS

Figure 3.5: Use case diagram of the statistics pages in the proposed system

Course Management

For the second use case model depicted in Figure 3.6 we illustrate the inter-
action possibilities with the improved course management of the proposed
system. With the advanced course management, tutors and roles with higher
privileges can view the number of active users in the course. Tutors can di-
rectly see a list of course exercises with information like the title and impor-
tant dates like the release date, due date and the assessment due date. Tutors
are also able to view information about the exercise progression, which in-
cludes the number of student participations in the exercise and the amount
of assessed and unassessed submissions. To get an idea of how well students
did in past exercises, tutors can see the average scores of those.

26

3.4. SYSTEM MODELS

Figure 3.6: Use case diagram of the course management

27

CHAPTER 3. REQUIREMENTS ANALYSIS

3.4.3 Analysis Object Model

In the next subsection, we will deal with the analysis object model of the
proposed system. In order to show the structural setup of the application
domain, we provide an UML class diagram and elaborate on the changes in
further detail. The analysis object model operates on a user-level and aims
to identify abstract concepts that the user interacts with [BD09], which is
why we omit unnecessary implementation details like access modifiers and
return types.

In Figure 3.7 we can see the structural integration of statistics views into
Artemis. We picture already existing entities in white, whereas newly added
items are colored in green. A course with its regular attributes and methods
has a number of unique course statistics, with each of them visualizing one
specific metric. Lectures, exercises and exams as part of a course share a
similar structure and have specific statistics. The specialized statistics in-
herit from a statistic superclass, which provides basic mutual attributes and
methods all statistics share. We will elaborate more on the statistic’s times-
pan and how it utilized in Section 3.4.4. A chart takes over the presentation
of the metric and displays the data with the help of labels.

28

3.4. SYSTEM MODELS

Figure 3.7: Analysis object model of the proposed system

29

CHAPTER 3. REQUIREMENTS ANALYSIS

3.4.4 User Interface

In the user interface subsection, we visualize previously analyzed innovations
of the proposed system. Successively, we will show a representative view and
elaborate on this in more detail. To distinguish more easily between page
elements, we use marks in the following figures.

Statistics

First, we demonstrate the new user statistics view. It is only accessible by
administrators and should give them an overview of the system in terms of
the usages by different roles. As the user statistics page is already completely
implemented, Figure 3.8 shows the finalized interface of this integration.

The design of the page is simple as the focus is supposted to lie on the
diagrams. By using the buttons marked with (1) it is possible to change the
timespan of which the data is shown. The following span types are available:

• Day: Shows the data throughout the day - considered hourly

• Week: Shows the data during the last 7 days - considered daily

• Month: Shows the data during the last month, depending on the last
month’s length - considered daily

• Quarter: Shows the data of the last 12 weeks - considered weekly

• Year: Shows the data during the last 12 months - considered monthly

By default, the active timespan is Week as seen in Figure 3.8. Figure 3.9,
Figure 3.10, Figure 3.11 and Figure 3.12 display the remaining options and
also visualize more metrics which the interface provides.

An additional element of this page is the ability to switch time periods.
By clicking one of the arrows besides every graph (2)(3), the user can either
view the previous time frame or the following one. While the arrows imply
changes to only one graph, switching timespans with (1) affects all charts.
After an interaction with the user, all affected graphs automatically refresh
and show the wanted information.

Using this functionality, it can be quite hard to keep track of the currently
displayed time period. That is why below every graph, we show the start
and the end date of the timeframe (4).

The user statistics have several metrics visualized to the administrator.
Since the appearance of the charts are identical except for data and title,
we representatively demonstrate the number of submissions, the amount of

30

3.4. SYSTEM MODELS

active users and the number of logged-in users in Figure 3.8. For the sake of
completeness we list all metrics shown in the user statistics in the following:

• Number of submissions done: The administrator is able to view
how intensely students work on exercises by the number of submissions
made.

• Number of active users: The administrator can view how many
students have been actively working on exercises.

• Number of logged-in users: The administrator can identify how
many users recently logged in.

• Number of released exercises: To schedule exercise releases, the
administrator can see how many exercise releases there are at a specific
time.

• Number of exercises due: To know how many exercises close at a
specific time, the administrator can view the number of exercises due
dates

• Number of exam conductions: To overview how many exams take
place at once, the administrator can overview the amount of exams
which will take place or have taken place.

• Number of students which participated in an exam: To check
how many students actually participated in exams, the administrator
can see how many exam participations exist.

• Number of exam registrations: To estimate how big exam conduc-
tions are, the administrator can view how many students are registered
to exams at a particular point.

• Number of active tutors: To get an overview at what time tutors
assess student submissions, the administrator can see this the number
of active tutors at a particular time.

• Number of created results: To overview at what time tutors cre-
ate the most or the fewest submissions, the administrator can see the
temporal distribution of created results.

• Number of created feedback: Because it is interesting to evaluate
how many feedbacks are created in a particular time, the administrator
can see the amount of feedback creations.

31

CHAPTER 3. REQUIREMENTS ANALYSIS

Figure 3.8: The user statistics page showing the amount of submission, active
users and logged-in users, each in different weeks

Figure 3.9: The distribution of submissions made throughout a day in Artemis

Figure 3.10: The number of active users during December 2020

Figure 3.11: The number of conducted exams during the exam phase of WS
20/21

32

3.4. SYSTEM MODELS

Figure 3.12: The number of distinct active tutors from April 2020 until March
2021

Other statistic pages

For the integration of statistic pages into Artemis, we use an modification of
a Specialization approach [BDDS02]. This means that while providing a rela-
tively general overview over all Artemis-wide courses in the user statistics, we
specify further into separate course exclusive statistics pages and from there
on into separate exercise, lecture and exams statistics pages as well. On the
one hand a general Artemis-wide statistics interface supports administrators
in identifying bandwidth problems or scheduling exam conductions and on
the other hand some metrics like the average score are not meaningful on
a universal Artemis-wide level and should be rather included only in course
statistics.

In order to support specialization, we provide the same metrics as shown
in the user statistics, but also extend the information visualization so Artemis
can display special content related metrics as well. For course statistics, this
covers for example the just mentioned average scores of students in home-
work and also question related information like questions asked or questions
answered. Artemis adds these metrics to the list of displayed graphs, like the
average scores graph shown in Figure 3.13.

Figure 3.13: Additional metrics for the course statistics page. The blue line
indicates the average course score while the bars present average
scores of particular exercises

33

CHAPTER 3. REQUIREMENTS ANALYSIS

Course Management Overview

We want to enrich the current course management overview in order to give
it more use than just navigation, which is now the case. In Figure 3.14 we
demonstrate the course management overview of the proposed system.

Here Artemis arranges the courses among each other, but provides more
information regarding the courses’ progress during the semester. Artemis
now displays a course as a tile and in this particular tile, we integrate an
exercise list where the user is able to see the most relevant exercises (1).
They are categorized in 4 different groups.

Beginning with the group on the very top of the list, are the Released
Soon exercises, containing the ones which have not yet started. The second
group of this list are the exercises Currently In Progress, which contain ex-
ercises the students are participating at the moment. The last two exercise
groups are the tasks which are currently assessed by the tutors, called Cur-
rently In Assessment and exercises which are completely finished, including
assessment. In order to not make the list too long and confusing, the Cur-
rently in progress group is the only one not collapsed by default and we limit
the future exercises to the ones starting during the next week. Past exercises
show the latest 5 and indicate with 4 of 4 (2) how many past exercise the
course potentially contains.

Considering a specific exercise row, Artemis shows the exercises’ title
and dates (3), which is also done in the current system, but now features
analytics data. Since exercises have different relevant aspects depending
on the state, we show different metrics for each exercise group previously
discussed. Following statistics are shown for the respective group (4):

• Future Exercises: For upcoming exercises we find there is not really
a necessary metric to display, so we do not display anything.

• Currently In Progress: For exercises which the students work on at
the moment, Artemis displays the number of submission in relation to
the number of students in the course.

• Currently In Assessment: For exercises which the tutors currently
assess, Artemis shows the number of assessments in relation to the
amount of student submissions.

• Past Exercises: For exercises with already finished assessment, Artemis
displays the average student points in relation to the maximum reach-
able points of the exercise.

34

3.4. SYSTEM MODELS

On the right side of the aforementioned, the user can directly navigate into
an exercise subpage in order to edit it, view the exercise scores or enter
the submissions page (or respectively for programming exercises go to the
grading page).

Next to the exercise list we present a simplified version of the active users
chart taken from the statistics views. We minimize it so it shows the number
of active students of the last 4 weeks in this course.

Just like in the current system’s course management overview, the tutor
is able to navigate to Exercises, Exams and Assessment Dashboard, whereas
an instructor can additionally access Lectures, Scores, the Instructor Course
Dashboard and also the course group management page. A newly added
navigational element is the Statistics button, which open course statistics for
this particular course.

Figure 3.14: A tile representing a course in the Course management overview

Course Management Detail Page

We do not create the course management detail page from scratch but instead
improve an already existing page. We want to extend the ability of this page
in order to help the instructor or tutor to get a better overview of the course
by introducing new features.

We demonstrate an advanced interface in Figure 3.15. The idea is to
build upon the data displayed in the tile of the overview. The instructor gets
a first impression of the course status through the tile in the overview page
and if deeper insights are needed, has the possibility to move into the detail
page by clicking on the tile header to access it.

35

CHAPTER 3. REQUIREMENTS ANALYSIS

At the top of the interface, we provide buttons for navigational purposes.
Below, Artemis shows the number of active students throughout the last 4
weeks and offers the opportunity to adapt the time period as it is possible in
the user statistics view (1). Artemis provides an exercise list similar to the
one displayed on the overview page (2) but this time including every exercise
of the course and the possibility to search for specific exercises through a
search bar on top of the list (3). The progress bars (4) are able to display
different metrics depending on the current status. Future exercises do not
display any metric as there is none to show. Exercises which the student work
on at the moment visualize the number of participations. Exercises which
are currently assessed by tutors display the number of participations and the
progress of the assessment. For exercises which have a passed assessment
due date we show the number of participations and the average score in the
exercise.

A detail view exclusive integration are the doughnut charts marked with
(5), which offer 4 different metrics regarding the tutor and student progress.
First, Artemis displays the percentage of overall assessments in relation to
the amount of exercise submission. Second and third, metrics regarding tutor
feedback in terms of complaints and more feedback requests are given, with
a special focus on how many of those the tutors already addressed and how
many are still unanswered. Fourth, we show the average student’s score
throughout the whole course.

36

3.4. SYSTEM MODELS

Figure 3.15: Proposed course management detail page with advanced metrics

37

Chapter 4

System Design

In the following chapter we introduce system design models based on the
analysis model of the prior requirements analysis. The goal of this chapter
is to bridge the gap between the application domain which we discussed in
Chapter 3 and the solution domain. While the analysis model depicts the
system only from the actors’ point of view, system design alters the viewpoint
and also takes in account how the system should be realized in terms of the
internal structure [BD09]. We provide an overview of the proposed system,
define design goals and create a subsystem decomposition. As a guideline on
how to accomplish this, we follow the System Design Document Template
presented in [BD09].

4.1 Overview

We do not change any core functionality or technology in the proposed sys-
tem. Artemis still uses a client server architecture as architectural style, a
special case of layered architecture. Characteristics of this style is the commu-
nication of the end user only with the client through a graphical user interface
(GUI), which then processes the requests, sends it to the server, receives a
server response and displays this response to the user. The implementation of
the client, also called Application Client, is in SCSS, HTML and Typescript.
Additionally, we use frameworks like Angular for Typescript and Bootstrap
for CSS. The client interacts with the Application Server using Websockets
and a REST-based Application Programming Interfaces. The implementa-
tion of the Application Server is mainly based on Java and we make use of
the frameworks Hibernate for object relational mapping and Spring. MySQL
is the relational database for the system and besides the Application Server,
the server also communicates with a Continuous Integration server (CI) and

38

4.2. DESIGN GOALS

the Version Control Server (VC).

4.2 Design Goals

In this section, we want to map nonfunctional requirements taken from Sec-
tion 3.3.2 and map them to design goals. Design goals are an important
aspect of system design as they crucially guide decision-making and describe
goals for system optimization. Because design goals can also conflict with
each other, there are design goal trade-offs which we need to consider dur-
ing feature integration. Following listed design goals are sorted from high
priority to low priority.

1. Performance: On the one hand a page that the user must explicitly
open will only be used if it is quickly accessible (NFR1, NFR5, NFR8).
On the other hand, a page which is used very frequently must pro-
vide good performance otherwise it will slow down the user’s workflow
immensely [Bar10]. Therefore, we need to achieve good performance
when collecting data.

2. Usability: When analyzing data, especially a large amount of data,
it is of high importance to clearly define what data is important to
the user and how this data is displayed so the user does not get over-
whelmed. Interfaces should be easy to use by having a clear structure
and different features should also be (visually) separated from each
other. The time until the user is able to use the page to its full poten-
tial should be as low as possible (NFR6). As users operate on different
monitors with different screen sizes, the pages should also adapt to that
(NFR7).

3. Adaptability: When defining which data is relevant and should there-
fore be displayed by Artemis, a certain amount of subjectivity cannot
be prevented. Thus, we want it to be easily manageable to add or re-
move metrics which might become relevant or erase less important in
the future (NFR2).

Trade-Offs

Like mentioned in the overview, it is possible that design goals work against
each other. In the following, we highlight some of those conflicts and elabo-
rate why we choose one over another.

39

CHAPTER 4. SYSTEM DESIGN

1. Functionality vs. Usability: As stated in the design goals, it is
important to evaluate which data is relevant and which data can be
left unmentioned. There is a very high risk that a page is getting too
complex and too unclear when too much data is provided at once. Still,
the user should have access to as much information as possible. Since it
is also feasible to distribute information into several subpages, we have
the opportunity to provide the most important data in the overview of
the course, while getting into more detail in the detail page, therefore
not displaying too much information on the basic overview page while
also giving the user the opportunity to acquire deeper knowledge if
needed.

2. Rapid development vs. Functionality: Regarding the time limita-
tions this thesis has, we need to evaluate how much we can achieve in 4
months. Having this timeframe in consideration, basic analytics should
be done first: Providing a general user statistics page for administrator
does provide a fundamental basis for website analytics and is feasible in
the time constraints we have. We place light-weighted and very specific
views like an exam statistics page or a lecture statistics page to the end
of the working period as these interfaces are less crucial for identifying
course problems and can be dropped from the proposed system to keep
the schedule.

4.3 Subsystem Decomposition

Next, we want to distribute the proposed system into its subsystem and
further describe them. A subsystem as a part of the system encapsulates the
behaviour and status of the classes lying within and has well-defined services
available for other subsystems. The goal is to create a system architecture
where subsystem are loosely coupled and replaceable in order to allow changes
[BD09]. As already mentioned in Section 4.1 and also displayed in Figure 4.1,
Artemis uses a client server architecture that decomposes the system into a
client subsystem and a server subsystem, which communicate with each other
via REST APIs, pictured in the diagram as a ”lollipop” between server and
client. Based on Figure 4.1, we will elaborate on these subsystems in more
detail in the next subsections.

Server Subsystem Decomposition

Server-sided, new statistics pages need a corresponding API which offers the
possibility to fetch statistics from the server. As we do not have such a

40

4.3. SUBSYSTEM DECOMPOSITION

service yet, we introduce a new statistics subsystem on the server. This
subsystem provides a statistics service, which the client components use to
collect information about the metrics. The statistics subsystem uses other
server components like the course and exercise subsystem for data collection.
Since we stated in the nonfunctional requirements that for privacy reasons
we do not send user related data to the client, we compute the data needed
for a graph on the server and only send back the raw number which the
graph is going to display without any additional information. This also saves
bandwidth and therefore shortens the time until metrics are shown to the
user.

For the course management overview and for the course management
detail view we need basic as well as advanced course information, which
is fetched from the course service API. This subsystem already exists and
we will only extend it by some further functionality regarding our special
use case. Furthermore, the course subsystem depends on the server internal
exercise interfaces.

The just mentioned exercise subsystem handles exercise specific inquiries.
In this case, we want to gather information regarding the exercises in the ex-
ercise list. The exercise subsystem does not communicate with the newly
implemented client features directly through APIs, but rather collects infor-
mation for the course subsystem which then forwards this information to the
client.

Client Subsystem Decomposition

For the client-side system decomposition we first introduce a new view - the
statistics view. As the statistics for course, exercise, exam, lecture and the
global user statistics basically all share the same purpose and have a similar
underlying structure we generalize them into one subsystem. In this context,
we build a chart that is so universal that every statistics component of the
subsystem can use it. The different components fetch the content for the
graphs through the statistics service REST API provided by the server.

The course management detail view already exists in the current system
and is therefore only refactored. In the proposed system it consists of 2 major
subcomponents, the exercise list and the course management detail statistics.
It requests the needed information from the server via the course service API.
The course management detail statistics contain 2 subcomponents which vi-
sualize metrics regarding the status of the course, an active users chart and
a doughnut chart, which are omitted for reasons of clarity and comprehen-
sibility. Furthermore, while the data Artemis displays with the doughnut
charts is provided by the course management detail view subsystem, the ac-

41

CHAPTER 4. SYSTEM DESIGN

tive users chart fetches requested data on its own as the information can
change based on user input. The possibility to access the course statistics
creates a dependency between course management detail view and statistics
view.

Similar to the course management detail view, the course management
overview exists in the current system and is getting refactored. A newly
added subsystem of it is the course tile, which represents a course on the
page. Every tile in the course management overview consists of an exercise
list and an active users chart, which are therefore subsystems of a course tile
but omitted for clarity reasons. The data displayed in this view is fetched
once when accessing the page by requesting the course service REST API.
As there is the possibility to navigate into the course statistics and course
management detail view from the overview, we create a dependency between
the course management overview and the statistics view and a dependency
between the course management overview and the course management detail
view.

Figure 4.1: Subsystem Decomposition of the proposed system

42

Chapter 5

Object Design

In this chapter, we want to close the gap between the analysis and the sys-
tem design by refining solution domain objects introduced in Chapter 4 and
elaborating on specific implementation details of the proposed system.

5.1 Statistics

Figure 5.1 shows a class diagram, which models the actual implementation
of the statistics into the proposed system. Since the statistics views all
have similar visualizations and behavior towards the user, we take advantage
of this and implement the graph in such a way that each component can
reuse it. For this reason, the statistics view classes contains only very little
information. The user statistics view, for instance, has only 3 tasks.

The first one is to store the metrics we want to display to the user.
For this purpose, we introduce the new enumeration Metric which contains
every metric available, independent of the view. We representatively model
6 possible values in Figure 5.1. We pick the metrics we want to display
in the view from the Metric enumeration and store it in an array in the
StatisticsView.

Second, we define the timespan, called currentSpan, which is managed
globally for the whole view. For this value, we add the new enumeration
SpanType that can be either Day, Week, Month, Quarter or Year. Per de-
fault, currentSpan is set to Week for every statistics view. When the user
chooses a different span, the method onTabChanged() handles the change
request.

Third, we define the current view the statistics are in. We use it to tell the
graph component which data should be fetched from the server. Therefore,
values for view can either be Artemis, Course, Exercise, Exam or Lecture.

43

CHAPTER 5. OBJECT DESIGN

An additional value in any statistics page except the user statistics is the
ID of the entity the statistics belong to, for instance, the lectureId for the
lecture statistics view.

For the chart invocation, we create a graph for each element stored in the
metrics array of the statisticsView instance. As parameters, we forward the
information the graph needs to know:

1. Metric: Tells the graph which metric will be shown.

2. CurrentSpan: Tells the graph which timespan is currently chosen.

3. View : Tells the graph in which statistics view it is in. This is needed
when the graph must fetch new data due to user input like timespan
changes.

4. EntityId : An entityId is the id of the course, exercise, lecture or exam
the statistics are referring to. The graph uses the id to fetch new data
from the server. The entityId of a graph located in the user statistics
is not set.

As described in Section 3.4.4, a graph itself consists of several units. The
arrows besides the chart are handled by each graph individually and are
internally indicated by the periodIndex. Since you can theoretically do an
infinite number of clicks onto an arrow, we handle it by assigning an Integer
to it. Therefore, the periodIndex describes the deviation from the starting
point. The method switchTimeSpan() takes care of the user input in terms
of arrow clicks and updates the graph accordingly.

44

5.1. STATISTICS

Figure 5.1: Class diagram showing implementation details of the proposed sys-
tem regarding the statistics views

45

Chapter 6

Summary

This chapter concludes the thesis by presenting the current status of the pro-
posed system and its realized goals in Section 6.1.1, as well as the unrealized
goals in Section 6.1.2. In Section 6.2 we summarize the results of this thesis
and address how teaching analytics could be further improved by future work
in Section 6.3.

6.1 Status

In this section, we match the current status of the system to the requirements
stated in Section 3.3. We divide the requirements into the following three
categories:

 Implemented: The requirement is completely implemented.

G# Partially Implemented: The requirement is only partially imple-
mented, and further work is needed.

Not implemented: The implementation of the requirement has not
been started.

6.1.1 Realized Goals

Table 6.1 gives an overview of the currently implemented and not imple-
mented functional requirements. Table 6.2 lists all nonfunctional require-
ments and states whether or not we managed to implement them.

46

6.1. STATUS

Functional Requirement Status
Statistics
FR1 Open global Artemis statistics
FR2 Open course statistics
FR3 Access exercise statistics
FR4 Open exam statistics
FR5 Access lecture statistics #
Course management
FR6 View active users
FR7 View exercises
FR8 View exercise progression
FR9 View average score of exercise
Course management overview
FR10 View every accessible course
Course management detail view
FR11 Open tutor statistics
FR12 View average score in course
FR13 Search for exercise

Table 6.1: Overview of the implementation status of the functional requirements
(fully implemented, G# partially implemented, # not implemented)

Non-functional Requirement Status
Statistics
NFR1 Performance - Response time
NFR2 Supportability - Extensibility
NFR3 Reliability - Security
Course management overview
NFR4 Usability - Efficiency
NFR5 Performance - Response time
NFR6 Usability - Learnability
NFR7 Supportability - Adaptability
Course management detail view
NFR8 Performance - Response time

Table 6.2: Overview of the implementation status of the nonfunctional require-
ments (fully implemented, G# partially implemented, # not imple-
mented)

We implemented 20 of the 21 requirements which we announced in Sec-
tion 3.3. We managed to integrate teaching analytics in several locations

47

CHAPTER 6. SUMMARY

into Artemis. Administrators now have the possibility to access user statistics
(FR1), giving an analytical overview of Artemis. Instructors can open course
statistics, which present metrics regarding various aspects of the course con-
tent (FR2) as well as exercise and exam statistics (FR3, FR4).

Regarding the course management, we accomplished to improve the func-
tionality of different course management pages. We managed to provide the
tutors and instructors with information on how many users actively partic-
ipated in the course (FR6), which Artemis extends with the possibility to
adapt time constraints in the course management detail page. Tutors and
instructors are able to view a list of exercises (FR7) and can have a look at
the exercise participations, the exercise assessment progress and the average
score of those exercises (FR8, FR9). We also accomplished the additional
requirement elicited for the course management overview page, where tutors
and instructors can view every course they have access to in a tile below each
other (FR10).

The course management detail page is implemented and meets its full
requirements. Tutors can view their progress concerning their responsibilities
in the course. Artemis displays the average student score, the assessment
progress and the number of complaints and more feedback requests, as well as
how many of those are already addressed and how many are still unevaluated
(FR11, FR12). As an additional functionality regarding the list of exercises,
tutors can search for specific exercises from the course (FR13).

For the 4 out of 5 statistics pages we managed to realize all of the 8
nonfunctional requirements as seen in Table 6.2.

We hold the response restrictions when accessing statistics pages (NFR1).
Through the GraphType implementation, developers can easily add addi-
tional metrics in the future by adding a value to the enumeration (NFR2).
In terms of security, we have managed to restrict all computations to the
server, so that no information about student performances is passed to the
client (NFR3).

We successfully implemented all nonfunctional requirements concerning
the course management overview. A tutor is able to access the course exer-
cises within 2 interactions by using the course management overview (NFR4).
We also remain under the response time constraint which we specified of 2
seconds when accessing the course management overview (NFR5). We fulfill
nonfunctional requirement 6 and 7 (NFR6, NFR7) in the given time as we
provide a tooltip for every button without a title and an interface that is
adaptable to the screen size.

In terms of nonfunctional requirements of the course management detail
view, we achieved the performance requirement (NFR 8) as we currently
provide a fast execution time of the implemented functionality.

48

6.2. CONCLUSION

6.1.2 Open Goals

In this subsection, we discuss the open goals that we did not manage to
incorporate into the system. Due to time reasons, we failed to fulfill 1 out
of 21 requirements. The proposed system does not show specific lecture
statistics (FR5). As lectures currently do not provide a reasonable amount
of data which we could use to analyze its usage, we would need to spend more
time creating new metadata, which is not feasible in our time constraint.

6.2 Conclusion

With this work, we have integrated some major teaching analytics aspects
into Artemis. Previously, teachers lacked analytical functionalities that would
allow them to detect weaknesses of their lecture or exercises. An instructor
is now able to open statistics for several different course components and
draw conclusions from them. We provide administrators with Artemis-wide
analytics which can be used for server surveillance.

The new course management overview eases and enriches the workflow
of tutors and instructors and offers early course analytics, which was not
available before. Through the re-worked detail page, we are able to add
more value to it so tutors and instructors utilize it more often in the future.

With the innovations we provide, instructors should be able to improve
the lecture and exercise content in a way that allows students to work more
intensively on tasks which they have problems with.

6.3 Future Work

As we introduce teaching analytics to Artemis, we managed to build an
analytical foundation for upcoming work. However, there are a lot of other
opportunities to extend the teaching analytics capabilities of Artemis:

Introduce new metadata
In this thesis, we are relatively limited by the metadata which is already
created beforehand. A next step for further teaching analytics integration
would be to expand data generation in Artemis, like, for instance, for lec-
ture interactions: Currently, lectures do not create much data in terms of
student usage. There is no data generated on how often a lecture PDF is
downloaded or how often student click on embedded links. Furthermore,
including the possibility of lecture livestreams into Artemis would integrate
exercises into lecturing even better. An instructor could have the ability to
directly append in-class exercises which are displayed to the viewer through

49

CHAPTER 6. SUMMARY

a pop-up notification, like it is currently possible with quizzes. Through
this, we could display live exercise participation analytics and also identify
live viewer statistics regarding the lecture livestream. Instructors could then
analyze at which points students typically leave lectures.

Instructor alerts
Artemis could have the possibility to alert instructors on specific events.
These would include when average exercise grades fall below an threshold.
Instructors could then specify an average score threshold and if average ex-
ercise results are below the boundary after the assessment due date, Artemis
automatically notifies instructors about this event. Through this innovation,
we prevent the possibility of instructors overlooking bad exercise results.

Exam live analytics
Instructors currently do not have much control and hardly any insight when
exams are conducted. To give instructors a certain overview on what is cur-
rently happening in their exam, a live exam view could support instructors.
In this interface, instructors would have the possibility to view metrics such
as the number of already submitted exams, exam participations and which
exercise group students work on at that moment.

Integration of Machine Learning into Artemis
Using Machine Learning (ML) best practices to further improve Artemis’
teaching and student results is another potential area of improvement [VCR-
CPP20, KJD18]. A use case adjusted to the Artemis system would be to
guide tutor assessments as discussed in Section 3.4.1. Furthermore, a ML
algorithm could support instructors in their work and adapt exercises ac-
cording to the students’ strengths and weaknesses. The algorithm could
identify a bad average exercise score and automatically suggest exercises to
the instructor which help students in their understanding of the problematic
content. For instance, if a programming exercise contains an interface imple-
mentation which the students only rarely succeeded in, Artemis should detect
this weakness and propose an exercise to the instructors that addresses this
particular aspect.

50

List of Figures

1.1 Scenario where students achieve a bad average score in one of
three exercises . 4

2.1 The Weekly Learner Engagement of a course in edX Insights . 8

2.2 Video views grouped by course sections in edX Insights 9

2.3 Video frames which are viewed more than once, highlighted in
dark blue1 . 10

2.4 Number of video views slowly declining as students stop to
watch the lecture2 . 11

2.5 Submissions analytics of a text input problem in edX3 12

2.6 The course average score in canvas4 13

2.7 Course Analytics in Canvas5 15

3.1 Instructor Course Dashboard in the current Artemis version . 17

3.2 Instructor Exercise Dashboard in the current Artemis version . 18

3.3 The course management overview in the current system 18

3.4 Current course management detail page as instructor 19

3.5 Use case diagram of the statistics pages in the proposed system 26

3.6 Use case diagram of the course management 27

3.7 Analysis object model of the proposed system 29

3.8 The user statistics page showing the amount of submission,
active users and logged-in users, each in different weeks 32

3.9 The distribution of submissions made throughout a day in
Artemis . 32

3.10 The number of active users during December 2020 32

3.11 The number of conducted exams during the exam phase of
WS 20/21 . 32

3.12 The number of distinct active tutors from April 2020 until
March 2021 . 33

51

LIST OF FIGURES

3.13 Additional metrics for the course statistics page. The blue
line indicates the average course score while the bars present
average scores of particular exercises 33

3.14 A tile representing a course in the Course management overview 35
3.15 Proposed course management detail page with advanced metrics 37

4.1 Subsystem Decomposition of the proposed system 42

5.1 Class diagram showing implementation details of the proposed
system regarding the statistics views 45

52

List of Tables

6.1 Overview of the implementation status of the functional re-
quirements (fully implemented, G# partially implemented,
not implemented) . 47

6.2 Overview of the implementation status of the nonfunctional
requirements (fully implemented, G# partially implemented,
not implemented) . 47

53

Bibliography

[Bar10] Scott Barber. How fast does a website need to be?, 2010.

[BD09] Bernd Bruegge and Allen H Dutoit. Object–oriented software
engineering. using uml, patterns, and java. Learning, 5(6):7,
2009.

[BDDS02] Pieter Bekaert, Geert Delanote, Frank Devos, and Eric Steeg-
mans. Specialization/generalization in object-oriented analy-
sis: Strengthening and multiple partitioning. In International
Conference on Object-Oriented Information Systems, pages
34–43. Springer, 2002.

[HPM+20] Raza Hasan, Sellappan Palaniappan, Salman Mahmood, Ali
Abbas, Kamal Uddin Sarker, and Mian Usman Sattar. Pre-
dicting student performance in higher educational institutions
using video learning analytics and data mining techniques. Ap-
plied Sciences, 10(11):3894, 2020.

[Iss18] Moritz Issig. Development of an interactive live quiz compo-
nent with instant statistics in artemis. 2018.

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Uni-
fied Software Development Process. Addison-Wesley Longman
Publishing Co., Inc., USA, 1999.

[KJD18] Danijel Kučak, Vedran Juričić, and Goran Dambić. Machine
learning in education-a survey of current research trends. An-
nals of DAAAM & Proceedings, 29, 2018.

[KS18] Stephan Krusche and Andreas Seitz. Artemis: An automatic
assessment management system for interactive learning. In
Proceedings of the 49th ACM Technical Symposium on Com-
puter Science Education, pages 284–289, 2018.

54

BIBLIOGRAPHY

[KTKK12] Carola Kruse, Thanh-Thu Phan Tan, A. Koesling, and
M. Krüger. Strategies of lms implementation at german uni-
versities. 2012.

[KvFA17] Stephan Krusche, Nadine von Frankenberg, and Sami Afifi.
Experiences of a software engineering course based on interac-
tive learning. In SEUH, pages 32–40, 2017.

[Le16] Hong Le. Interactive computer science exercises in edx. 2016.

[OC12] Martin M Olmos and Linda Corrin. Learning analytics: A
case study of the process of design of visualizations. 2012.

[PSDJ16] Luis P Prieto, Kshitij Sharma, Pierre Dillenbourg, and Maŕıa
Jesús. Teaching analytics: towards automatic extraction of
orchestration graphs using wearable sensors. In Proceedings
of the sixth international conference on learning analytics &
knowledge, pages 148–157, 2016.

[Pur07] Patrick Purcell. Engineering student attendance at lectures:
Effect on examination performance. In International confer-
ence on engineering education–ICEE 2007, volume 2008, pages
699–717, 2007.

[Sie13] George Siemens. Learning analytics: The emergence of a disci-
pline. American Behavioral Scientist, 57(10):1380–1400, 2013.

[SL11] George Siemens and Phil Long. Penetrating the fog: Analytics
in learning and education. EDUCAUSE review, 46(5):30, 2011.

[TM18] Sarah Taylor and Pablo Munguia. Towards a data archiving
solution for learning analytics. In Proceedings of the 8th In-
ternational Conference on Learning Analytics and Knowledge,
pages 260–264, 2018.

[VCRCPP20] William Villegas-Ch, Milton Román-Cañizares, and Xavier
Palacios-Pacheco. Improvement of an online education model
with the integration of machine learning and data analysis in
an lms. Applied Sciences, 10(15):5371, 2020.

[Wal21] Stefan Waldhauser. Integration of learning analytics into
artemis. 2021.

55

BIBLIOGRAPHY

[Won17] Billy Tak Ming Wong. Learning analytics in higher educa-
tion: an analysis of case studies. Asian Association of Open
Universities Journal, 2017.

56

	Introduction
	Problem
	Motivation
	Objectives
	Outline

	Related Work
	edX Insights
	Canvas

	Requirements Analysis
	Overview
	Current System
	Proposed System
	Functional Requirements
	Nonfunctional Requirements

	System Models
	Scenarios
	Use Case Model
	Analysis Object Model
	User Interface

	System Design
	Overview
	Design Goals
	Subsystem Decomposition

	Object Design
	Statistics

	Summary
	Status
	Realized Goals
	Open Goals

	Conclusion
	Future Work

