
FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Securing and Scaling Artemis
WebSocket Architecture

Simon Leiß

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Securing and Scaling Artemis WebSocket
Architecture

Absicherung und Skalierung der
WebSocket-Architektur in Artemis

Author: Simon Leiß

Supervisor: Prof. Dr. Bernd Brügge

Advisor: Dr. Stephan Krusche

Date: 15.08.2020

I assure the single handed composition of this bachelor thesis only supported
by declared resources,

Munich, 15.08.2020 Simon Leiß

Acknowledgements

I wish to show my gratitude to everyone who has supported me within the
last months with this thesis. First, I want to thank my advisor Dr. Stephan
Krusche, who allowed me to write this thesis with Artemis, always supported
me, and was open to my ideas. He provided me with valuable feedback and
showed great interest in my thesis, despite his many additional responsibili-
ties.

Further, I want to thank the whole Artemis developer team for a great
and fun time during the work on my thesis. They supported me wherever
possible and also provided me with feedback.

I want to thank everyone who helped me implement the changed de-
ployment of Artemis, especially Linus Michel, Matthias Linhuber, Christian
Femers, Robert Jandow, Vincent Picking, and Jan Philip Bernius. They
spent countless hours of work to implement the changes proposed in this
thesis.

On a more general note, I want to thank my family and friends for guiding
me through the last months. Their support was precious and without them,
I would not have been able to be work on this thesis as I could.

i

Abstract

Artemis is an interactive learning platform that allows students to solve
quiz, text, modeling, and programming exercises. Students receive auto-
matic, individual feedback for programming and quiz exercises and receive
manual feedback for the other exercise types. As an increasing number of
students use Artemis, scalability and fault-tolerance become essential, espe-
cially for examinations that take place using Artemis.

Scaling vertically by adding more resources is not applicable beyond a
certain point, thus a horizontal scaling approach has to be implemented.
Security checks for real-time communication are limited. In this thesis, we
scaled Artemis to multiple virtual machines and improved the security for
real-time communication. We moved Artemis from one virtual machine that
hosts all subsystems, including the database server and the load balancer,
to a deployment on 14 virtual machines. This improved redundancy and
performance and separated different parts of the system. We introduced
additional subsystems such as a discovery service that are required when
moving a web application from one instance to a distributed system.

Instructors of five courses were able to conduct over 2,500 individual ex-
ams, with over 1,200 students participating in the largest one. We could
intercept failures of the system and fulfill performance requirements, even
with more than 2,300 concurrently connected users. We also optimized the
existing real-time communication to be less resource-intensive and more se-
cure by grouping messages and enforcing security checks.

Zusammenfassung

Artemis ist eine interaktive Lernplattform, die es Studenten ermöglicht,
Quiz-, Text-, Modellierungs- und Programmieraufgaben zu bearbeiten. Stu-
denten erhalten automatische, individuelle Rückmeldungen zu Programmier-
und Quizaufgaben und erhalten manuelle Rückmeldungen für die anderen
Aufgabentypen. Da Artemis von einer größer werdenden Zahl von Nutzern
in Anspruch genommen wird, ist Skalierbarkeit sowie Ausfallsicherheit ein
wichtiges Anliegen, insbesondere, da auch Prüfungen über Artemis durch-
geführt werden.

Vertikale Skalierung durch Hinzufügen weiterer Ressourcen ist nicht un-
begrenzt anwendbar, daher muss horizontale Skalierung angewendet werden.
Sicherheitskontrollen für die eingesetzte Echtzeitkommunikation waren bis-
her limitiert. In dieser Arbeit haben wir Artemis haben wir Artemis auf
mehrere virtuelle Maschinen skaliert und die Echtzeitkommunikation abge-
sichert. Wir haben Artemis von einer einzelnen virtuellen Maschine, die alle
Teilsysteme wie den Datenbankserver und den Load Balancer betrieben hat,
auf eine Architektur auf 14 virtuelle Maschinen umgezogen. Diese Änderung
verbessert die Redundanz und Leistung und separiert die einzelnen Teile des
Systems. Wir haben zusätzliche Komponenten wie einen Discovery-Dienst
hinzugefügt, die durch den Umzug einer Web-Anwendung auf eine verteilte
Architektur nötig werden.

Instruktoren von fünf Kursen konnten über 2500 individuelle Klausuren
abhalten, wobei über 1200 Studenten an der größten Klausur teilnahmen. Wir
konnten Fehler im System abfangen und die Leistungsanforderungen erfüllen,
auch mit mehr als 2300 gleichzeitig verbundenen Nutzern. Wir haben außer-
dem die Echtzeitkommunikation durch Gruppierung von Nachrichten und
erweiterten Sicherheitskontrollen verbessert, damit sie weniger Ressourcen
verbraucht und sicherer ist.

Contents

1 Introduction 2
1.1 Problem . 2
1.2 Motivation . 5
1.3 Objectives . 6
1.4 Outline . 6

2 Background 8
2.1 Scaling . 8
2.2 Caching . 10
2.3 Real-time communication . 12

3 Requirements Analysis 14
3.1 Current System . 15

3.1.1 Deployment . 15
3.1.2 Security . 16

3.2 Proposed System . 17
3.3 System Models . 19

3.3.1 Scenarios . 19
3.3.2 Dynamic Model . 21

4 System Design 22
4.1 Overview . 22
4.2 Design Goals . 22
4.3 Subsystem Decomposition . 23

4.3.1 Architectural style . 26
4.4 Hardware/Software Mapping 28
4.5 Persistent Data Management 32
4.6 Access Control . 33
4.7 Global Software Control . 34
4.8 Boundary Conditions . 34

4.8.1 Starting procedure . 34

ii

4.8.2 Shutdown procedure 35
4.8.3 Update procedure . 35
4.8.4 Failure handling . 36

5 Object Design 39
5.1 Caching . 39
5.2 Delegating scheduled tasks . 41

5.2.1 Primary instance . 41
5.2.2 Failover . 43

5.3 Shared storage . 44
5.4 WebSocket broker . 44
5.5 WebSocket security checks . 45
5.6 WebSocket message grouping 45
5.7 Discovery . 47
5.8 Monitoring . 48

5.8.1 Machine monitoring 49
5.8.2 Application monitoring 50

5.9 IP hashing in load balancer 51

6 Case Study 53
6.1 Artemis application server . 53
6.2 Performance evaluation . 54
6.3 Failure handling . 55
6.4 File System . 56

7 Summary 57
7.1 Status . 57

7.1.1 Realized Goals . 58
7.1.2 Open Goals . 58

7.2 Conclusion . 58
7.3 Future Work . 59

A Performance evaluation 60

iii

ASE Chair for Applied Software Engineering

CIS Continuous Integration Server

NFS Network File System

ORM Object/Relational Mapping

REST Representational State Transfer

SQL Structured Query Language

STOMP Simple Text Oriented Messaging Protocol

TLS Transport Layer Security

UMS User Management Server

VCS Version Control Server

VPN Virtual Private Network

WS WebSocket

1

Chapter 1

Introduction

Artemis is an online platform developed at the chair for Applied Software En-
gineering at Technical University Munich (TUM) [KS18]. It allows students
to solve exercises created by instructors and receive individual feedback based
on manual, semi-automatic, and automatic assessment. Students can solve
the exercises individually or in teams, following the approach of interactive
learning [KSB+17]. Artemis supports text, quiz, modeling and programming
exercises, allowing for widespread use, especially in computer science courses.
As many students use Artemis, problems regarding the performance occurred
in the last semesters. In the winter semester 2019/20, more than 1500 stu-
dents used Artemis concurrently before deadlines in large courses like the
practical course

”
Fundamentals of Programming“1, leading to performance

issues.

The expected higher number of students using the platform in upcoming
semesters inevitable forces to implement ways to improve the performance
using both scaling and improving the current usage of resources.

This thesis focuses on the required horizontal scaling of the Artemis ap-
plication server and subscription management for real-time communications.

1.1 Problem

Figure 1.1 shows the current setup with one application server that handles
all requests of the clients. The application server uses a database server to
persist data. This deployment scales not adequate as more users will higher
the load on the server, therefore decreasing the performance of the server as
well as the satisfaction of the users.

1Praktikum: Grundlagen der Programmierung (PGdP)

2

1.1. PROBLEM

Scaling vertically can increase the performance of the system [LSL+14].
In this approach, administrators add more (hardware) resources (like more
memory or faster CPUs). It does not require changes to the system’s design
as only the hardware of existing subsystems is updated. In the current de-
ployment, scaling the Artemis Application Server would be sufficient. The
gain is limited as, at some point, it is not useful or possible to add more re-
sources to the system. Also, vertical scaling does not improve the redundancy
in case of a server failure or maintenance.

«infrastructure»
University Data Center

«subsystem»
client1:Artemis

Application Client

«subsystem»
Database Server

«subsystem»
clientN:Artemis

Application Client

«subsystem»
client2:Artemis

Application Client

«subsystem»
:Artemis

Application Server

REST + WS

REST + WS

REST + WS

WS

WS

WS

Figure 1.1: Current deployment with one application server, multiple application
clients, and their interfaces. Clients communicate with the applica-
tion server using REST and WebSockets (WS), which stores data
into the database server.

Horizontal scaling increases the performance of a system by adding more
instances of the application server. This technique is especially suitable for
client/server architectural styles and three-tier architectural styles [BD09].
As Artemis uses the latter one, changes proposed in this thesis can be applied.
It requires additional work during system design as the system has to support
a distribution over multiple (virtual) machines.

Clients and server communicate using REST and WebSockets. A client
uses REST2 to perform operations at the server and processes the result.
The server then stores the data in the storage layer, making Artemis use a
three-tier architectural style.

2Representational State Transfer, an architectural style for distributed hypermedia
systems [FT00]. REST is based on the client-server architectural style, is stateless and
cachable, provides an uniform interface and supports a layered system style to allow for
scaling.

3

CHAPTER 1. INTRODUCTION

The server can not send data to the client but must rely upon the client
fetching updates using a pull-approach [FM11].
Artemis uses WebSockets3 bidirectionally whenever the server has to send
information to the client without a request from the client. Clients can
subscribe to specific topics and the server notifies them as soon as new data
regarding the subscribed topic is available, therefore using a push-approach
[Lom15; WSM13].

Components that rely on fast bidirectional communication (e.g., live
quizzes) use WebSockets, whereas tasks that do not require real-time up-
dates (e.g., exercise creation) use REST calls. Due to the statelessness of
REST, scaling the REST-API is comparatively simple as the server does
not hold any information about the client but will use external data storage
like databases [Mas11]. As Artemis uses WebSockets in cases where it holds
information about the client internally (like in caches or the file system),
scaling WebSockets is more complicated. Multiple servers must synchronize
the internally stored data between each other once horizontal scaling is in
place because clients are not guaranteed to connect to the same server at all
times.

The high number of users causes performance issues that are further in-
creased as in some cases, clients subscribe to topics they do not require as
well as several similar topics. In the current setup, to get informed about
new results for an exercise, the client of an instructor will create one Web-
Socket subscription for every student that participates in that given exercise.
In large courses with several instructors, the instructors cause multiple thou-
sand subscriptions. One subscription per instructor is sufficient if the server
sends the updates not per student but exercise. The server then sends all new
submissions for this exercise to the instructor using the same subscription.

Additionally, clients subscribe to topics where only a small part of the
information is relevant for them. The server requires additional resources to
manage these subscriptions, although only a very restricted group of clients
needs this information.

Besides the additional need for resources, the current behavior can also
cause problems in the range of data protection. Although the connection
between the client and the server is encrypted using Transport Layer Secu-
rity (TLS) [Erk12], issues can arise. TLS secures the integrity of the data
transmitted using WebSocket connections, therefore the data can not be read
or altered by a third party.
Encrypting the data does not ensure that the client receiving the data is

3WebSockets, based on the WebSocket protocol, are bidirectional messaging channels
to communicate between client and server [FM11].

4

1.2. MOTIVATION

authorized to do so. Modified clients could use the data sent to them and
extract unintended information. This especially applies to results of exercises
within Artemis, as a maliciously modified client could receive results from
other students.

1.2 Motivation

Figure 1.2 shows the aimed deployment after we implemented the changes
proposed in the thesis. The system’s performance improves by adding more
instances of the application server to distribute the load. This diagram
focuses on the central newly added subsystems (load balancer and several
instances of the application server) and omits some additional subsystems
required for this setup.

The clients are not connected to the same instance of Artemis but are
connected to different instances as the load balancer delegates the requests.

In the aimed deployment, server administrators can perform maintenance
work with less impact on the users. They can perform several tasks (such as
updating Artemis) on the instances separately, allowing for higher availabil-
ity. The redundancy also creates better fault tolerance, as a failure of one
instance of the application server does not affect the whole system.

«infrastructure»
University Data Center

«subsystem»
client1:Artemis

Application Client

«subsystem»
:LoadBalancer

«subsystem»
:Database Server

«subsystem»
clientN:Artemis

Application Client

«subsystem»
client2:Artemis

Application Client

«subsystem»
instance1:Artemis
Application Server

«subsystem»
instance2..N:Artemis

Application Server

REST + WS REST + WS REST + WS

WSWSWS

...

existing

new

Figure 1.2: Aimed deployment with several instances of the application server
with respect to the offered interfaces (REST, WebSocket (WS))
and the LoadBalancer subsystem. The LoadBalancer distributes re-
quests from application clients to different instances of the applica-
tion server.

5

CHAPTER 1. INTRODUCTION

The better usage of resources with regards to WebSocket subscriptions
also increases the system’s performance as fewer subscriptions have to be
managed by the server. We will introduce a way to authenticate and au-
thorize clients using WebSocket subscriptions based on topics to reduce the
number of unnecessary subscriptions [MNS+88].

1.3 Objectives

During the research, we will analyze and design how we can scale Artemis
horizontally based on existing solutions for the used Java framework Spring
boot4. We will add additional instances of the Artemis application server in
order to distribute the load. After implementing the proposed changes, we
will validate that Artemis can fulfill the requirements, especially in terms of
performance and availability.

Concerning the implementation, we will focus on a simple but effective
way to distribute the workload over several servers. Once established, it
should allow developers to implement their features at a reasonable expense,
although the architecture of Artemis changed. We will evaluate multiple bro-
ker platforms (like Apache Kafka5 and Redis6) during the research and will
implement different ways to synchronize the application servers depending
on the existing use cases to ensure efficient and reliable behavior.

Therefore, we are going to update the current WebSocket usage to the
new architecture, including authorization and work out on how to both secure
new WebSocket connections to prevent unauthorized entities from accessing
data and designing the WebSocket architecture in a scalable way.

1.4 Outline

We moved a web-application, Artemis, from a single instance to multiple
instances and focused on the problems that might arise when doing so, espe-
cially in terms of real-time communication (using WebSockets).

We focused on three levels of synchronization between multiple instances
of the application server:

1. REST-calls using a shared database and shared cache

4https://spring.io/projects/spring-boot
5https://kafka.apache.org/
6https://redis.io/

6

https://spring.io/projects/spring-boot
https://kafka.apache.org/
https://redis.io/

1.4. OUTLINE

2. WebSocket-communication using a broker to relay messages

3. file system using a shared file system

The system’s existing functionality should not be modified, but the sys-
tem should support multiple instances of the application server to increase
performance and decrease failures. Administrators of the system should man-
age the system with comparable effort, although it is now distributed over
several virtual machines. An advanced monitoring system aids them in doing
so.

The existing WebSocket communication should be improved to be less
resource-intensive and more secure.

7

Chapter 2

Background

This chapter focuses on background information that is useful to understand
the concepts applied in this thesis.

2.1 Scaling

Scaling, in general, allows a system to adapt to changing requirements. This
can be required, e.g., due to an increasing user base of a system, which
causes more load on the existing system. This leads to the system getting
unable to handle the load within the expected performance requirements.
Administrators want to ensure that their system is reachable for an increased
user base. Therefore, they need to increase the resources the system can use.
There are, in general, two approaches to do this, using either vertical or
horizontal scaling [DGV+12].

Vertical scaling

Vertical scaling keeps the systems architecture untouched and only modifies
the existing machines to use more resources [KAEC+18]. This technique is
especially useful when using virtual machines, as administrators can usually
increase their resources like CPU count or memory size with short notice.
Some virtualization techniques also allow the change of these allocated re-
sources without restarting the virtual machine, thus allowing a highly adopt-
ing solution.

As vertical scaling does not add new components to the system but only
modifies existing ones, the software running on the system usually does not
need to be adapted to the scaled environment. The system runs on the same
deployment as before but uses additional resources, ensuring that it is better

8

2.1. SCALING

capable of fulfilling the requirements.
Figure 2.2 shows an example of how the system’s resources improve by

updating the system’s underlying hardware. After scaling the system twice,
the system now has four CPUs and 16 GB of memory instead of one CPU
and two GB of memory from the beginning. The costs of running the system
change with the number of resources the system has, thus a small system is
cheaper than a larger system.

t2.small
1 CPU / 2 GB RAM

~ € 20/mo

t2.medium
2 CPU / 4 GB RAM

~ € 40/mo

t2.xlarge
4 CPU / 16 GB RAM

~ € 160/mo

Figure 2.1: Vertical scaling of a system by using hardware with more/faster re-
sources. Costs are exemplary prices taken from Amazon Web Ser-
vices for one month for t2.small, t2.medium and t2.xlarge EC2 in-
stances.

Decreasing the load on the system, reduces the needed resources of the
(virtual) machine. This helps limiting the costs of running the system

Horizontal scaling

Horizontal scaling modifies the system’s deployment by adding more in-
stances of an existing application [KAEC+18]. In most cases, these instances
can be added and removed on demand in order to handle load peaks. As the
system’s deployment changes, the software must be adjusted to support the
new distributed system.

According to van Steen and Tanenbaum, a distributed system is a collec-
tion of autonomous computing elements that appears to its users as a single
coherent system [VST17].

We thus want that all instances of the application are be able to handle
the same requests so that an additional component, like a load balancer,
can forward the requests to one of the instances without applying additional
logic.

9

CHAPTER 2. BACKGROUND

This requirement may, depending on the application, require changes as
not all systems support adding new instances. They might e.g., store data
in the memory that is now only accessible by one instance and not other
instances. Thus, additional synchronization between multiple instances may
be needed, which the application must implement.

Figure 2.2 shows how the system’s resources improve by adding addi-
tional machines that run the application. As the system now consists of
multiple machines, the cost of running the system increases. The system, in
this example, now also consists of four CPUs and has eight GB of memory
available.

t2.small
4 * (1 CPU / 2 GB RAM)
4 * (€ 20/mo) ~ € 80/mo

2 * t2.small
2 * (1 CPU / 2 GB RAM)
2 * (€ 20/mo) ~ € 40/mo

t2.small
1 CPU / 2 GB RAM

~ € 20/mo

Figure 2.2: Horizontal scaling by adding more machines to the system. Costs are
exemplary prices taken from Amazon Web Services for one month
for t2.small EC2 instances.

One significant benefit of a horizontal scaling approach is that, in general,
instances can be added/removed with less interruption than applying vertical
scaling. Also, vertical scaling is not applicable beyond a certain point, as all
resources that the system should use must still be available on the underlying
hardware. In contrast, the resources can be split over several hardware nodes
when using horizontal scaling. Horizontal scaling also allows for easier failure-
tolerance: The other instances can handle an outage of one instance of the
system if administrators configured the system in such a way.

2.2 Caching

To prevent unnecessary requests to the database server, Artemis uses caches
to store data in the memory that the system might use again. Otherwise,
the data has to be fetched from the database server multiple times. This im-
proves the system’s performance as loading data from the cache (memory) is
faster than fetching it from the database (possibly over the network) [JF11].

10

2.2. CACHING

As Artemis should use the cache extensively to provide performance improve-
ments, the cache acts as another source of truth (next to the database) where
only data is stored that is identical to the data stored in the database.

Distributed Caching

The cache that Artemis currently uses is present per instance after horizontal
scaling, thus different instances of Artemis have different caches with different
data stored in these caches. When using multiple instances, the additional
source of truth that the cache should provide is not guaranteed.

If one instance of the system performs an update to both the database
and their local cache, everything seems fine from this instance’s perspective.
A second instance that also uses a local cache as an additional source of truth
will not receive a notification about the change the first instance applied to
the database. Thus the data stored in the local cache of the second instance
and the database deviates. As the second instance does not know about the
inconsistent state of the data it uses, it assumes that the data in the local
cache is still valid.

This leads to issues as now several instances of the horizontally scaled
system do not behave in the same, way as a different version of the data is
present in the different instances.

One solution to solve this issue, apart from disabling the cache, which
decreases the performance, is the use of a distributed cache. This cache
is present on all instances of the scaled system and shares the same data,
thus preventing the existence of different versions of stored data. Once one
instance applies changes to the database (and therefore also in their local
cache), it will broadcast the change to other instances. They then apply the
change in their local cache.

There exist different types of distributed caches that also use different
types of architectural styles [KNO+02; YHM00]. One common style is the
client/server architectural style, where every instance of the scaled system
acts as a client and communicates with an additional server that manages all
clients. Another typical style is the peer-to-peer architectural style, where
all instances connect to each other. They send updates directly from one
instance to all other instances because in this style, every instance acts as
the client and also as the server [BD09].

11

CHAPTER 2. BACKGROUND

2.3 Real-time communication

Artemis uses real-time communication to send data from the client to the
server and vice versa without opening a new HTTP-connection. The connec-
tion stays open and both parts (client & server) can send data to the other
part to which it responds.

Real-time communication is essential for exchanging messages from the
server to the client. The server is not able send data without request from the
client. Artemis sends, e.g., results from the server to the client in real-time so
that the client can display updated results without users having to refresh the
application manually. Another use case is the publishing of a new exercise,
which a client should know about so that it can show it to the user. This
is especially relevant for quiz exercises as they are generally limited in their
duration (less than 10 minutes in most cases). In order to support students
to use the whole duration for the exercise, quizzes start automatically. Real-
time communication ensures that the students can participate in an exercise
without having to reload the application.

Another common use case is the visualization of the feedback of program-
ming exercises as soon as the Continuous Integration Server (CIS) executed
the tests. Students then use the feedback to rework their submission and
achieve a better performance.

WebSocket

WebSockets are the technical concept that Artemis uses to implement real-
time communication.

WebSockets were standardized in 2011 in RFC 6455 and allow bidirec-
tional communication between client and server/broker using TCP [FM11].
They allow exchanging arbitrary messages as long as both sender and receiver
can interpret the message.

To use WebSockets, clients create an HTTP-connection, which they up-
grade to a WebSocket-connection if the server supports WebSockets [SHS14].

STOMP

Although WebSockets support any protocol in general, a standard protocol
used in combination with WebSockets is the STOMP protocol.

STOMP1 is a Simple Text Oriented Messaging Protocol that allows clients
to communicate with so-called message brokers to exchange messages inde-
pendent of programming languages or platforms [Sto]. It is a protocol with

1https://stomp.github.io/

12

https://stomp.github.io/

2.3. REAL-TIME COMMUNICATION

only a small amount of different operations (compared to other protocols like
AQMP2).

The messages are sent bidirectionally between clients and brokers; there
are implementations for a broad set of different clients and brokers.

Table 2.1 shows typically used commands. The CONNECT command is
used by the client to initiate a connection to the server and, upon accepting
the connection, the server will respond with CONNECTED.

The client can subscribe to updates (new messages) of specific destina-
tions using the SUBSCRIBE command. This indicates to the server that it
should send all updates regarding that particular destination to the client.
The server can do so using the SEND command. The client can also use the
SEND command to send messages to specific destinations on the server.

Command Parameter Usage
CONNECT The client initiates a connection with the server
CONNECTED The server accepts the connection from the client
SUBSCRIBE destination Subscribe to updates of the given destination
SEND destination Send a message to the given destination

Table 2.1: Selected STOMP commands with selected parameters. The client can
connect to the server, which the server acknowledges. The client can
then subscribe to topics and both client and server can send arbitrary
messages.

2Advanced Message Queuing Protocol, see https://www.amqp.org

13

https://www.amqp.org

Chapter 3

Requirements Analysis

With respect to requirements, the main goal of this thesis is to keep the ex-
isting functionality. It is not the goal to introduce new functionality in terms
of new requirements.

Figure 3.1 shows that clients connect to the Artemis server. This appli-
cation server currently only exists once, causing a single point of failure if
this one instance, for whatever reason, becomes unavailable. This is critical
during lectures with live interactive exercises (e.g., quizzes). An interruption
in the availability can interfere with the lecture’s planned schedule and can
negatively influence the students’ learning experience.

«infrastructure»
University Data Center

«subsystem»
client1:Artemis

Application Client

«subsystem»
Database Server

«subsystem»
clientN:Artemis

Application Client

«subsystem»
client2:Artemis

Application Client

«subsystem»
:Artemis

Application Server

REST + WS

REST + WS

REST + WS

WS

WS

WS

Figure 3.1: Current deployment with one application server, multiple application
clients, and their interfaces. Clients communicate with the applica-
tion server using REST and WebSockets (WS), which stores data
into the database server.

14

3.1. CURRENT SYSTEM

As exams take place on Artemis in the summer term 2020 due to the
corona crisis, instructors require that the system provides high availability.
An outage during an exam can cause significant additional work. In the worst
case, instructors can not grade the whole exam and need to seek different
approaches to execute the examinations. Therefore, we plan to scale Artemis
horizontally to provide the required failure tolerance in case one instance
of the application server fails, e.g., due to a problem with the underlying
hardware.

The performance of Artemis currently also depends on this one instance
and once this one instance can not be scaled vertically any more, the per-
formance is limited. This is critical as during large lectures and exams, up
to 2,000 users can use the system at the same time, expecting a responsive
system.

We also aim to improve the security and scalability of WebSocket con-
nection as many WebSocket subscriptions cause high load on the system.
Potential unsecured subscriptions can cause users to receive information to
which they should not have access.

3.1 Current System

This section focuses on the current deployment of the system and the security
checks currently in place for WebSocket connections.

3.1.1 Deployment

As already introduced in section 1.2, Artemis currently runs on one virtual
machine that hosts both the application server and the database. Several
external systems, like a Version Control Server (VCS) and a Continuous
Integration Server (VCS), interact with this instance bidirectionally.

This system can handle several hundred students without issues. How-
ever, especially during live exercises with a high submission rate (like multiple
choice quizzes, where every selected checkbox causes a new submission and
therefore a request to the server), the system may have longer response times
or might get unavailable. This impact can cause problems as users might not
be able to interact with the system as fast as expected. Users who are un-
satisfied with their experience will often reload the application, thus causing
additional requests and a further increase in response times for all users.

15

CHAPTER 3. REQUIREMENTS ANALYSIS

Although Artemis has several hundred users connected every day during
the semester (often over 700 concurrent users during regular working hours),
these users often do not produce a high load on the system. Users often leave
their computers running with the application open but do not interact with
it. Artemis counts these users towards the user statistics, but they cause
close to zero impact on the system.

During a lecture with live exercises, this situation changes quite drasti-
cally as now almost all students participating in the lecture interact with the
system simultaneously. Artemis now has to deal with the increased load for
the exercise duration and will then have fewer users again once the exercise
is over.

Figure 3.2 gives one example: It shows the user statistic during the EIST
(“Introduction to Software Engineering”, the acronym for the German title
of the course “Einführung in die Softwaretechnik”) lecture that took place
on July 16, 2020. One can identify the start of the lecture at 8.15 am as the
lecture starts with a “good morning quiz” where every participating student
has to open the Artemis application. As this quiz exercise only took a few
minutes, the user count decreased from 1,380 users at 08.20 am to just over
1,000 connected users at 09.00 am. The students connected to Artemis inter-
act with the system intensively as close to 900 students participated in the
quiz, producing over 7,000 submissions in 5 minutes (as each student causes
multiple submissions). The remaining users are students who study for other
courses, students who leave the application running without interaction, or
students who use multiple browsers.

3.1.2 Security

Another issue is that clients receive some information to which they should
not have access. An unmodified client will not use this information (by not
showing it to the user), but a maliciously modified client could leak data in
some cases. This mainly affects WebSocket subscriptions: Currently, a client
subscribes using a participation identifier if it expects data for this particular
participation. This subscription ensures that users receive updates to their
participation (e.g., new results) as soon as possible without reloading the
application. While an unmodified client will only subscribe to the current
user’s participations, a modified client could also subscribe to the participa-
tions of other users. The server does not, in all cases, validate the legitimacy
of the subscription and will allow clients to subscribe to participations of
different users. Once the user who owns that participation receives a new
result (e.g., by a manual assessment for text exercises or an automatic assess-

16

3.2. PROPOSED SYSTEM

Figure 3.2: Statistic showing the user count during the EIST lecture on July 16,
2020. The user count increases from less than 200 at 08.00 am to
over 1,300 at 08.15 am. The count decreases once the exercises are
over, but decrease again when new exercises start, until the lecture
ends at 11.00 am.

ment for programming exercises), all subscribed clients will be notified. As
other clients can also subscribe to these new results, they can get unintended
information.

3.2 Proposed System

The system should handle a higher number of users without noticeable per-
formance impact for every individual user. We implement horizontal scaling
as vertical scaling is only possible to a certain point, which we already reached
[DGV+14]. This requires changes to the system and assumptions that hold
in the current system do not hold anymore in the proposed system. We will
identify these changed areas and rework them to support a distributed sys-
tem.

We will also investigate the existing WebSocket communication and will
detect scenarios with missing/insufficient authorization. Once we identify
these scenarios, we will prioritize them in their severity and add authorization
to the findings.

Figure 3.3 shows a more detailed view of the proposed system. Several
instances of the application server handle requests from the clients, which
a load balancer forwards to them. The instances communicate with the
database to load data and use a shared cache, for which they directly com-

17

CHAPTER 3. REQUIREMENTS ANALYSIS

municate. Multiple instances use a discovery service to find each other. A
broker relays WebSocket messages from one instance to another.

«infrastructure»
University Data Center

«subsystem»
client1:Artemis

Application Client

«subsystem»
:LoadBalancer

«subsystem»
:Database Server

«subsystem»
clientN:Artemis

Application Client

«subsystem»
client2:Artemis

Application Client

«subsystem»
instance1:Artemis
Application Server

«subsystem»
instance2..N:Artemis

Application Server

«subsystem»
:Broker

REST + WS REST + WS REST + WS

WSWSWS

...

«subsystem»
:Disovery Service

existing

new

Figure 3.3: Aimed deployment with several instances of the applications server
with respect to the offered interfaces (REST, WebSocket (WS)) and
the subsystems LoadBalancer, discovery service and Broker. The
LoadBalancer distributes requests to the different instances of the
application server. The Broker allows the instances of the applica-
tion server to exchange WebSocket messages. The discovery service
provides information of currently running instances of the applica-
tion server.

Nonfunctional Requirements

NFR1 Performance (Scalability): Artemis can deal with a higher number
of users using horizontal scaling. New instances of the application
are introduced, helping to distribute the load on the system. Artemis
should be able to handle 10.000 concurrent users. Requests to save
submissions during an exam should take less than 100ms for 95% of
the users.

NFR2 Reliability (Availability): The system should automatically handle
the failure of one subsystem of the application by passing all requests
to available instances and re-balancing stored data. Artemis should be
able to handle the outage of any of the subsystems and still provide full

18

3.3. SYSTEM MODELS

functionality. This also affects the handling of scheduled tasks which
should be executed even if one instance of the application server fails.

NFR3 Reliability (Security): Users can only subscribe to topics using Web-
Sockets where they have sufficient permissions. Artemis will detect
invalid requests and log them so that attacks can be detected.

NFR4 Supportability (Maintainability): Developers and administrators should
still be able to deploy Artemis to a simplified setup that only consists
of one machine, especially for development and testing environments,
even after we implemented NFR1 & NFR2 and thus multiple instances
are supported. Also, smaller deployments of the system, where the user
base is smaller and therefore performance and reliability requirements
are relaxed, should not be forced into an update that would require
them to change their current deployment.

3.3 System Models

The focus of this part of this thesis lies on boundary use cases and non-
functional requirements.

As this thesis does not implement any new functionality, the user interface
is not modified. The existing functionalities should still be available after we
implemented the changes proposed in this thesis.

3.3.1 Scenarios

The following scenarios show how Artemis should support a deployment with
multiple instances. The scenarios do not propose new functionality but show
that the existing functionality still works after moving Artemis from one
instance to several instances.

Failure handling

Students can participate in quiz exercises in Artemis [Sch18]. Participants
solve the quizzes, consisting of multiple-choice-, short-answer- and drag-and-
drop-questions, during lectures (live quizzes) or personal study (practice
quizzes) [CY19].

If the system fails during a live quiz, all submissions will be lost as they
are not saved into the database before the quiz is over. The following sce-
nario shows how a second instance can mitigate the failure of one instance

19

CHAPTER 3. REQUIREMENTS ANALYSIS

of Artemis.

Alice is registered in the EIST 2020 course and wants to join the morning
quiz L11E01 Quiz that takes place during the lecture at 08.15 am on Thurs-
day, July 16, 2020. She boots her Lenovo Thinkpad running Windows, opens
Chrome, and navigates to the Artemis application at 08.10 am. As the quiz
did not start yet, she has to wait until the quiz starts. Max, the instructor,
decided that he wants to start the quiz manually and does so at 08.15 am
using his MacBook Air running Safari. Joe is one of the administrators of
Artemis and because Max and Joe did not communicate before, Joe does not
know that a quiz is running and thus, several hundred students use Artemis.
He wants to increase the amount of memory of one virtual machine that runs
Artemis from 4GB to 6GB and reboots the virtual machine running instance
1 of Artemis at 08.17 am. Alice was connected to this instance of Artemis
and worked on the quiz. She has already submitted answers to 5 of 10 ques-
tions. As the instance she was connected to is no longer available, she is
automatically reconnected to instance 2 that runs on a different virtual ma-
chine. Instance 2 also has saved all submissions she made to the quiz so Alice
can continue to answer the remaining questions without loss of progress.

Team exercises

Artemis supports exercises which are not solved individually but in teams
[Wau20]. In these exercises, teaching assistants create teams and students
that belong to the same team solve exercises together. They see the team’s
current submission to an exercise and can change it as long as the exercise
is running. Every team member gets the grading of the exercise counted
towards their score.

Artemis should still support team exercises even if the team members are
not connected to the same instance, as shown below.

Alice and Bob are students enrolled in the EIST 2020 course. They are
part of the same team and thus solve their team exercises together. On July
22, 2020, they realize that they have not yet solved the exercise T05E03 De-
scribe your Hardware Software Mapping, which is a team text exercise where
they have to describe the Hardware/Software Mapping of the game they de-
veloped during the EIST 2020 course. At 01.40 pm, Alice boots her Lenovo
Thinkpad running Windows, opens Chrome, and navigates to the EIST 2020
course on Artemis. She starts the exercise as it is not yet started and be-
gins to answer the question while being connected to instance 1 of Artemis.
As Bob is not sure if Alice understood the concepts of Hardware/Software

20

3.3. SYSTEM MODELS

Mapping correctly, he wants to check what Alice has already submitted in
the exercise. He boots his Dell laptop running Ubuntu at 01.45 pm, opens
Firefox, and navigates to Artemis, but the load balancer connects him to
instance 2. As soon as he also opens the exercise, both Alice and Bob see
that the other person is online and has opened the exercise. Bob verifies that
Alice did not forget anything in their submission, corrects typos, and adds
some details. Alice sees the changes Bob made despite being connected to a
different instance.

3.3.2 Dynamic Model

Figure 3.4 shows a simplified communication procedure for a quiz exercise
with two actors and two instances of the application server. Alice, the stu-
dent, is connected to one instance of the application server and Max, the
instructor, is connected to a different instance. Thus, no instance can di-
rectly send operations that one of the users performed to the other user.
Max starts the quiz exercise and executes the quiz starts on the instance he
is connected to. This instance relays the quiz start to the other instance so
that users connected to a different instance can also participate in the quiz
exercise.

Alice can then participate in the quiz exercise and send her submission
to the instance she is connected to. This instance will now also relay the
submission to the other instance. A failure of one instance can not cause a
loss of the submission as two instances store the submission.

alice:Student

instance1:Artemis
Applicaton Server

max:Instructor

instance2:Artemis
Applicaton Server

1.1: startQuiz(quiz1)

1.3: startQuiz(quiz1)

2.1: saveSubmission(submission1)

2.3: saveSubmission(submission1)

client1:Artemis Client client2:Artemis Client

1.2: startQuiz(quiz1)
2.2: saveSubmission(submission1)

Figure 3.4: Communication diagram showing a simplified communication pro-
cedure during a quiz exercise. An instructor starts the quiz on one
instance of the application server, which this instance relays to a
second instance. A student then saves a submission on one instance
of the application server using his/her client, which then replicates
the submission to a second instance.

21

Chapter 4

System Design

We define the system’s design goals and decompose it into smaller subsystems
that can be realized by individual teams [BD09].

4.1 Overview

Artemis should support multiple instances of the application server to im-
prove the reliability and performance for a large number of users and should
use improved real-time communications regarding security and resource us-
age. It should not provide a changed behavior to the user as no functional
requirements exist.

4.2 Design Goals

As described in section 3.2, we had to take several design goals into account
for changing the current system design.

Online exams/graded exercises use the exam mode that requires a failure-
tolerant system so that even in the unlikely case of a failure of one instance
of the application server, the system is still available and no data gets lost.
We, therefore, prioritize NFR2 (Reliability) so that Artemis can handle this
kind of failure. NFR1 (Performance) will thus be less important as students
can use a system that is a bit slower but will not use a system where we
cannot guarantee the persistence of data and the availability of the system.
NFR4 is closely related to NFR1 & NFR2, as NFR1 & NFR2 both focus on
the scalability of the system (with different objectives) and NFR4 states that
the system should still be usable without scaling. Thus, we require NFR4 if
NFR1 or NFR2 is implemented, as a simple development and testing setup
is crucial for a sound system.

22

4.3. SUBSYSTEM DECOMPOSITION

NFR3 (Security) not only applies to the exam mode but also for every
part of the application server that uses WebSockets and handles personal
data. Due to time limitations, we focused on NFR1 and NFR2 (and thus
also NFR4) to provide a failure-tolerant and fast exam mode. We decreased
the importance of NFR3 because no exploits are known and Artemis uses
WebSockets for only a limited set of operations that include students’ data.

Another trade-off we had to decide on was also the deployment of the sys-
tem (which we go into in section 6.1). We had to decide between machines
that were available at short notice but have fewer resources and machines
with more resources but higher provisioning times. We decided to use the
machines that were available at short notice initially and use the newly ac-
quired machines as soon as they are received and configured.

4.3 Subsystem Decomposition

The Artemis system, especially in a deployment with multiple instances,
consists of 5 subsystems: application server, database, broker, load balancer,
and discovery service. We discuss each subsystem in this chapter.

Application server

The application server contains the server-side logic related to the Artemis
learning platform. It communicates with external systems like an external
User Management Server and Version Control server, processes requests from
clients and stores data into the database.

REST

The application server provides the REST API the client uses to show the
information relevant for the current page. It fetches data from the database
and writes changes to the database if the data is updated. If used in a multi-
instance deployment, the application servers can answer the REST requests
without further changes as REST is stateless, so every application server can
always answer every request.

Caching

We use a cache within the application server so that the database does not
have to serve all requests. This improves the system’s performance as load-
ing data from the cache is faster than fetching the data from an external
subsystem like the database, as described in section 2.2.

23

CHAPTER 4. SYSTEM DESIGN

As Artemis has to use a distributed cache to guarantee consistent data
between several instances of the application server (see section 2.2), we had to
take additional steps to support this setup. We decided to use a distributed
cache based on a peer-to-peer architectural style. Thus we have to make
sure that every instance of the application server can communicate with all
other instances. All instances that share the same data form a so-called
cluster and thus must be both known to and reachable from each other.
Once all instances share the distributed cache, they can serve requests with
comparatively little adjustments as the data in the database and the cache
is synchronized. Developers working on the system should not need to take
care of the cache manually. If the instances do not know or can not reach
each other, they can not fully build the cluster, which leads to an inconsistent
state.

A more detailed description of the cache changes is present in section 5.1.

Database

The database persists most of the data (except uploaded files) Artemis stores.
The application server connects to the database and fetches, inserts, updates,
and deletes data in the database using SQL1. Other subsystems do not in-
teract with the database.

Broker

As clients can connect to any application server instance, only one instance
can send messages to any specific client using WebSockets (the instance to
which the client is directly connected). If one user performs an action that
causes a message to a different client (e.g., an instructor starts a quiz which
causes the client of the student to show the quiz automatically), only the
instance to which the client is connected can send this message. An instructor
connected to instance A can thus start the quiz, but a student connected to
instance B will not receive the message that the quiz started as instance A
can only send messages to clients that connected to itself.

The broker solves this issue as all instances of the application server
relay the WebSocket connections to the broker. Suppose an instance of the
application server tries to send a message to a user but fails to do so because
the user is not connected to this instance. In that case, it can send the
message to the broker instead, which then tries to deliver it to the user by
sending it to the instance the user is connected to. The instance handling

1Structured Query Language, a way to manipulate data in a relational database [MS93].

24

4.3. SUBSYSTEM DECOMPOSITION

the connection to this specific user can send the message to this client so
that the message created by a different instance can still be delivered.

Figure 4.1 shows such a scenario where instance1 uses the broker to de-
liver a message. instance1 first tries to directly send the message to client1
but is unable to do so as client1 is not connected to instance1. instance1
then sends the message to the broker, and the broker then forwards the mes-
sage to the other connected instances. instance2 receives the request to send
the message to client1 and can send the message as client1 is connected to
instance2.

instance1:
Artemis Application Server

:Broker

instance2:
Artemis Application Server client1:Client

1. sendMessage(message, client1)

2. sendMessage(message, client1) 3. sendMessage(message, client1)

4. sendMessage(message)

Figure 4.1: Communication diagram with a sample usage of the broker as relay:
instance1 tries to send a message to client1. instance1 relays the
message to the broker after failing to deliver the message directly.
The broker forwards the message to instance2, which can deliver the
message, as client1, as this client is connected to instance2.

Load Balancer

The load balancer terminates the HTTPS connection by decrypting the
SSL/TLS-encrypted traffic [MHP12]. It then forwards the decrypted traf-
fic to the instances of the application server by distributing the requests.
Although the software that runs the load balancer is already part of the cur-
rent deployment as it handles the mentioned SSL-termination, it is not used
as a load balancing component but as so-called reverse proxy, which only
handles the SSL-termination.

Discovery service

All application servers register themselves to the discovery service so that
they can find each other. On startup, the application server sends a REST

25

CHAPTER 4. SYSTEM DESIGN

request to the discovery service to inform it about the application start. It
also requests all other instances that are already running and, if there are
any, will connect to these instances to form a distributed caching cluster as
described in section 4.3.

Figure 4.2 shows this startup process with two instances of the application
server and the discovery service. The first instance registers itself so that the
discovery service is aware of which host and port this instance is running on.
The second instance then also starts and fetches currently running instances
from the discovery service. The discovery service returns the host and port
of the first instance. The second instance then establishes a connection to
the first instance to form the distributed caching cluster.

instance1:Artemis
Application Server

instance2:Artemis
Application Server

:Discovery Service
1. registerInstance(instance1) 2. fetchRegisteredInstances()

3. establishConnection()

Figure 4.2: Startup process of two instances of the application server in combi-
nation with the discovery service. An instance registers itself to the
discovery service during startup. A second instance fetches the reg-
istered instances and uses this information to establish a connection
to the first instance.

4.3.1 Architectural style

The architectural style of Artemis deviates by applying the changes proposed
in this thesis. The three-tier architectural style currently best represents
Artemis, where a client runs in the user’s web browser that allows the user
to interact with the system. It thus is the interface layer as described by
Bruegge and Dutoit [BD09]. The client communicates with the application
server, which responds to the requests from the client and therefore is the
application logic layer. The server persists the data into the database and
file system, which act as storage layer.

The architectural style changes as now several subsystems exist that do
not fit into the three-tier architectural style. Erb introduced a model of a
scalable web infrastructure that can also be applied to Artemis. Figure 4.3

26

4.3. SUBSYSTEM DECOMPOSITION

shows the model Erb introduced [Erb12]. It omits the client, thus only the
former application logic and storage layers are displayed as well as the newly
added components.

The updated architectural style of Artemis can be mapped to this model
as follows: The load balancer introduced in this section is also present in
the model but Artemis does not use reverse caches as the HTTP servers
of the application servers serve all requests. The HTTP server Tomcat2 is
embedded within the application server and handles incoming requests be-
fore passing them to the application server’s business logic [Erb12]. The
application server contains the mentioned business logic and interacts with
several other components. One of these components is the storage back-
end, which consists of the database and file system and was already present
before as storage layer. Artemis integrates with external services like the
Version Control Server (VCS), Continuous Integration Server (CIS), and the
User Management Server (UMS), which were also already present before the
change of the architectural style but not explicitly mentioned. The Broker
can also be mapped to the model, as described in this chapter. Cache Sys-
tems were present before but are now in a more exposed role as the need for
distributed caching requires changes as described in section 2.2.

Despite not being mentioned explicitly as background worker services,
Artemis uses them, especially for scheduled tasks. The change of the archi-
tectural style also required changes to these background worker services as
described in section 5.2.

Thus, we conclude that despite minor deviations, the updated architec-
tural style of Artemis fits well into the style presented by Erb.

2http://tomcat.apache.org

27

http://tomcat.apache.org

CHAPTER 4. SYSTEM DESIGN

Load Balancers

Reverse Caches

HTTP Servers Application
Servers

Storage Backends

Message Queue
Systems/Brokers

Background
Worker Services

Cache Systems

External Service
Integration

Figure 4.3: An architectural model of a web infrastructure that is designed to
scale. Components are loosely coupled and can be scaled indepen-
dently [Erb12].

4.4 Hardware/Software Mapping

Hardware/Software mapping describes the hardware configuration of the sys-
tem [BD09]. Artemis uses a different hardware/software mapping as we move
from a deployment with one instance of the application server to one with
several instances.

In the current setup, one machine hosts all major subsystems that Artemis
uses for its basic functionality. This includes the application server, the
database server, and the load balancer that currently only provides SSL-
termination. Different hardware hosts other subsystems like the User Man-
agement Server (UMS), the Version Control Server (VCS), and the Contin-
uous Integration Server (CIS). Artemis communicates with these external
subsystems via HTTP(S).

As required by NFR4, it should still be possible to deploy the system on
a single machine. All features related to scaling are optional within Artemis,
thus a simplified deployment is still possible, especially for testing and de-
velopment environments and deployments with a smaller user base.

As this simplified deployment does not require the broker & discovery
subsystems, administrators can omit the setup of these subsystems and only
set up the application server, database server, and load balancer (which

28

4.4. HARDWARE/SOFTWARE MAPPING

only handles the SSL-termination and does not actually balance requests
as described in section 4.3). Figure 4.4 shows this simplified setup.

«infrastructure»
University Data Center

<<device>>
:UnixHost

«subsystem»
:Database Server

«subsystem»
:Artemis

Application Server

«subsystem»
:LoadBalancer

Figure 4.4: Simplified deployment on one machine, e.g., for a testing environ-
ment. The load balancer communicates with the application server,
which uses the database as storage.

Figure 4.5 shows the aimed, more complex deployment concerning the
used machines. Different machines run the different subsystems of Artemis,
as described in this section. The figure does not show the client as this thesis
focuses on scaling the application server. The client still communicates with
the application server (through the load balancer) as figure 3.3 shows, but
as the changes are transparent to the client, we will omit the client from the
figure.

Database server

To allow for better scaling, we moved the subsystems that currently run
on the same machine to different machines. We move the database to its
own (virtual) machine to increase its performance. The resources of this
machine do not have to be shared with other subsystems anymore. We can
also scale this machine better vertically as we can adjust its resources for a
database server and are not limited by running several services with different
requirements on that one machine. If the database server would run on the
same machine as the application server, increased resource consumption by
the application server would also impact the performance of the database
server. This particularly causes issues as we now run several instances of
the application server. Therefore one instance could slow down all other
instances as they rely on the database server.

29

CHAPTER 4. SYSTEM DESIGN

«infrastructure»
University Data Center

<<device>>
:UnixHost

<<device>>
:UnixHost

<<device>>
:UnixHost

<<device>>
:UnixHost

<<device>>
:UnixHost

«subsystem»
instance2:Artemis
Application Server

«subsystem»
:LoadBalancer

«subsystem»
:Database Server

«subsystem»
instance1:Artemis
Application Server

«subsystem»
:Broker

existing

new

«subsystem»
:Disovery Service

Figure 4.5: More complex deployment on several machines within the univer-
sity’s data center. We moved the existing load balancer and database
server subsystems to own machines and deployed additional instances
of the application server, the discovery service and broker subsystems
on separate machines.

30

4.4. HARDWARE/SOFTWARE MAPPING

Load Balancer

The load balancer also runs on its own (virtual) machine to reduce the num-
ber of subsystems on one machine and allow for better scaling. As it handles
all traffic to and from clients, the throughput of the network connection is
essential. Memory and CPU are not as relevant as the load balancer is very
resource-saving. However, it should support a large number of open files to
handle a large number of users 3.

Artemis application server

Instances of the application server should be running on individual (virtual)
machines so that they can neither affect each other nor different subsystems
like the database server by having a high resource usage.

Administrators can assign different weights to the different instances of
the application server so that instances with more abundant resources (like
more CPU cores) get more requests than instances with less resources.

As the application server is mainly CPU intensive, the weight should
depend on the available computation power rather than other resources like
system memory.

A concrete setup can be seen in the case study in section 6.1.

Broker & Discovery service

One machine can host both the broker and the discovery service as the dis-
covery service only requires minimal resources. The broker relays WebSocket
messages between all instances of the application server. Thus it should have
a reliable connection to the machines running the application server.

Encryption

As we use several different protocols for the communication between the dif-
ferent subsystems, we use a Virtual Private Network (VPN) tunnel between
the machines. Therefore, we do not have to focus on different encryption
methods for the protocols (including their key management) but can use a
secured tunnel between the machines. Our decision was for WireGuard4,
a secure network tunnel that operates at layer 3 [Don17]. Every machine
creates a tunnel to every other machine. Thus we do not have one server

3https://medium.com/@cubxi/nginx-too-many-open-files-error-solution-

for-ubuntu-b2adaf155dc5
4https://www.wireguard.com/

31

https://medium.com/@cubxi/nginx-too-many-open-files-error-solution-for-ubuntu-b2adaf155dc5
https://medium.com/@cubxi/nginx-too-many-open-files-error-solution-for-ubuntu-b2adaf155dc5
https://www.wireguard.com/

CHAPTER 4. SYSTEM DESIGN

that manages the connection, but every machine acts as a server for all other
machines and also connects to all other machines as a client.

Only the load balancer is reachable from the public internet using the
ports 80 (for HTTP) and 443 (for HTTPS). It forwards all traffic received on
port 80 (unencrypted to port 443 (encrypted), therefore the request coming
from the user will always be encrypted. The load balancer will then ter-
minate the SSL/TLS encryption and forward these requests to one of the
application server instances using HTTP. The traffic is no longer encrypted
on layer 4 (SSL/TLS) but is still encrypted on layer 3 using the secure Wire-
Guard tunnel. The selected application server will then e.g., interact with
the database and broker (using the WireGuard tunnel) and responds with
an answer through the tunnel to the load balancer. The load balancer then
adds the SSL/TLS encryption to the data and sends it to the client.

4.5 Persistent Data Management

We moved the database server to a new machine, as we described in 4.4, but
did not apply changes to the database schema.

We changed the storage of data in the file system due to the distributed
deployment with multiple instances of the application server. The file storage
hosts files like submissions for file upload exercises, icons for courses, and
repositories students use in the code editor. Josias Montag implemented the
online code editor for students in 2017 to work on a repository without having
to checkout locally [Mon17]. The server will clone the repository from the
Version Control Server and send the contained files to the client. The client
then shows them to the user. The user updates, creates, and deletes files and
folders using his/her web browser and, once finished, commits the changes.
The server then applies the changes to the locally checked out repository and
pushes them to the Version Control Server.

As the load balancer may connect users to different application server
instances during the work on the repository in the online code editor, all
instances have to share the file storage. This ensures that all instances have
the same version of the files at any given time. Without sharing the storage, it
would be possible that a user starts a programming exercise on one instance
of the application server (thus, this instance checkouts the repository into
the local file system), but the load balancer connects the user to a different
instance after the checkout. The second instance then does not have the
repository checked out, which leads to problems as the client of the user

32

4.6. ACCESS CONTROL

expects the server to have the repository present.

More details of the implementation of the shared storage are present in
section 5.3.

4.6 Access Control

Access control matrices show which actor can execute which operations on
which context [BD09]. Table 4.1 shows to which topics administrators, in-
structors, teaching assistants, and students can subscribe. Artemis uses Web-
Sockets subscriptions if the server should inform the client about updates,
e.g., notifications or new results for exercises.

Instructors should have permissions regarding the creation and manage-
ment of exercises as well as results. Teaching assistants should not receive
updates about exercises but only about participations of students (and their
results). Students should only be able to receive information relevant to them
as it affects them personally (e.g., their result of an exercise they participated
in) or affects all students (e.g., the notification that an instructor updated
an exercise of a course in which they are enrolled). They should not be able
to access any information that is related to other students.

Unmodified clients will not show the personal information of other stu-
dents (e.g., their results), but maliciously modified clients can access it if the
server does not implement the access control correctly.

Action Administrator Instructor Teaching Assistant Student
Receive personal notifications 3 3 3 3

Receive student notifications for course 7 7 7 3

Receive teaching assistant notifications for course 7 7 3 7

Receive instructor notifications for course 3 3 7 7

Receive system notification 3 3 3 3

Receive update about toggled features 3 3 3 3

Track open pages 3 3 3 3

Receive update about own team assignments 3 3 3 3

Receive automatically submitted modeling submission
(specified by id)

7 7 7 3(Own submissions)

Receive updated test cases for solution
repository of exercise

3 3 7 7

Receive updates about changed tests repository
of exercise

3 3 7 7

Receive update that an instructor triggered
a build for programming exercises

3 3 7 7

Receive statistic update for quiz exercise 3 3 3 7

Save quiz submission 7 7 7 3

Receive result of quiz exercise 7 7 7 3

Receive update about own programming submissions 3 3 3 3

Receive update about own programming results 3 3 3 3

Receive update about submissions of exercise 3 3 3 7

Receive update about results of exercise 3 3 3 7

Table 4.1: Access control matrix showing the subscription permissions for Web-
Socket topics.

33

CHAPTER 4. SYSTEM DESIGN

4.7 Global Software Control

Global Software control describes the handling of synchronization and con-
currency within the system [BD09]. The setup with multiple instances of
the application server requires additional handling in the synchronization,
especially for scheduled tasks.

When using multiple instances of one (sub-)system, issues may arise about
ensuring that the system executes tasks exactly once. We do not want the
system not to execute tasks at all, as then some parts of the application
logic may behave incorrectly. We also do not want the system to execute
tasks more than once. Not all tasks are necessarily idempotent and even if
idempotent, several executions of the same task require additional resources.

We decided to use two different strategies for different use cases, which
we describe in section 5.2.

4.8 Boundary Conditions

Boundary conditions focus on conditions that the system must handle but are
not part of its key requirements, including start-up, shutdown, and exceptions
[BD09].

This section focuses on the changed procedures that the administration
of the distributed system requires.

4.8.1 Starting procedure

As we now have a distributed deployment, the starting procedure of the sys-
tem gets more complicated. Figure 4.6 shows several dependencies between
the subsystems. The application server depends on the database, the bro-
ker, and the discovery service (requiring them to start before itself). The
load balancer depends on the application server. For the load balancer, it
is sufficient if one of the application server’s instances is reachable. It can
detect if the other instances are unavailable and prevent routing traffic to
them if they are. Also, the dependency between the load balancer and the
application server is a soft dependency (represented by the dashed line). De-
spite failing requests from the client, the load balancer can handle a startup
procedure where it is started before the application server as well. The load
balancer sends an error message to the client, stating that the application
server (so-called upstream) is not yet reachable.

As the instances of the application server form a cluster to support dis-
tributed caching, they need to know each other. The discovery service pro-

34

4.8. BOUNDARY CONDITIONS

vides this information. In order to form a correct cluster, at least one instance
has to be known to the discovery service once an additional instance starts.
Thus, there should be a delay between the start of the primary and the
secondary instances, allowing the primary instance to start up before the
secondary instances create a cluster with the primary instance.

load balancer

application server

database broker discovery service

Figure 4.6: Dependency graph of the subsystems. The application server de-
pends on the database, broker and discovery service. The load bal-
ancer (soft)-depends on the application server.

4.8.2 Shutdown procedure

We can derive the shutdown procedure by inverting the starting procedure.
The administrators should stop the load balancer before they stop the ap-
plication server as this ensures that the application server receives no new
requests. As the application server depends on the database, broker, and
discovery service, administrators should only stop them after they stopped
all instances of the application server.

After they stopped the application server, they can safely stop the database,
broker, and discovery service.

4.8.3 Update procedure

An administrator usually wants to update the system (which most of the time
requires downtime and makes the system unavailable) when only a compar-
atively small amount of users use to the system. This causes them to often
update the system either very early in the morning or very late in the evening,
which, for most persons, is not optimal as these are not typical working hours.

By adding multiple instances of the application server, administrators
can remove instances from the system without making the whole system

35

CHAPTER 4. SYSTEM DESIGN

unavailable as other instances can still handle requests. This allows a rolling-
release, where the system is always available.

This type of release is not applicable for all updates of the application
server but can decrease the downtime for some updates.

Critical deployment

These deployments include updates that require all instances of the applica-
tion server to use the same version. This might e.g., be due to updates of
the database structure, where one instance updates the database on startup,
which causes other instances to fail as the updated database structure does
not match the one they expect.

Critical deployments still require a downtime of the system, as admin-
istrators must stop all instances and once no instance is running, they can
start the updated version. There should never be multiple versions of the
application server running, as this might cause issues when an unexpected
database structure is present.

Non-critical deployment

Non-critical deployments (rolling-releases) allow the administrator to update
the system without making the whole system unavailable. The administra-
tors have to split to instances into two subsets, which they update succes-
sively. Once they stop the first subset of instances, the load balancer connects
the users connected to these instances to the remaining instances. They can
then update the first subset and start them with the updated version. Once
these instances are running and start serving requests again, the system runs
with two different versions simultaneously.

The administrators can now restart the second subset, causing all users
to reconnect to the first subset. Once the second subset is updated, it gets
added to the system again and can respond to requests.

The administrators were able to update the whole system without causing
downtime for the users as a subset of the instances was always available.
Only some deployments support this update method as they must not cause
changes to the database, as pointed out above.

4.8.4 Failure handling

As one of the non-functional requirements is improving the reliability (avail-
ability), we have to point out which subsystems of the system are fault-
tolerant and which are not.

36

4.8. BOUNDARY CONDITIONS

Load Balancer

As we only have one load balancer deployed, a failure of it would cause all
clients to lose connection to the server; thus, Artemis becomes unavailable.
The load balancer is very reliable and broadly used. We hence do not expect
it to fail. If the underlying machine fails, users cannot reach the whole system
anymore.

Application server

If one instance of the application server fails, other instances can mitigate
this. The load balancer can detect the failure and will no longer send requests
to the unavailable instance. Submissions of users are not affected by the
failure as they are either stored in the database or within the distributed
cache. We configured a replica-count of 1 for the distributed cache to ensure
that a failure of one instance can not cause data loss.

Database server

The database is a crucial part of the system as its failure will cause the
unavailability of the whole system. A second server can mitigate this issue
by taking over if the primary server fails. We did, however, currently not
implement this.

Broker

A failure of the broker causes WebSocket connections to no longer work. All
clients will show a ’Disconnected’ message once they detect the outage due
to a missing heartbeat5. This outage affects the functionality that relies on
bi-directional messages, especially on messages sent from the server to the
client. Automatic updates for new results, notifications, and the submission
state of team exercises will no longer be available. The functionality that
does not depend on WebSockets, e.g., loading courses and exercises, starting
and participating in (individual) exercises is still possible. Once the broker
gets available again, clients re-establish the connections and can use all func-
tionality. A secondary broker can decrease the risk of an outage but is, at
the moment, not fully supported.

5A message that is periodically sent between two systems so that they can confirm that
the other system is available.

37

CHAPTER 4. SYSTEM DESIGN

Discovery service

The main functionality of the discovery service is to provide information
about currently running instances. As described in section 4.8.1, secondary
instances depend on the discovery service to find the primary instance. If
the discovery service fails during this startup, the distributed cache can not
create the cluster correctly, thus causing an inconsistent state. A failure of the
discovery service after the startup has no impact as the cluster already exists.
It is also possible to work with multiple instances of the discovery service
that replicate each other. Although Artemis supports this deployment, we
currently have not added a second instance of the discovery service.

38

Chapter 5

Object Design

This chapter of the thesis focuses on selected design decisions that we made
to implement the behavior described in chapter 4.

5.1 Caching

Artemis uses a cache to reduce the load on the database server, as we de-
scribed in section 2.2.

Artemis uses Hibernate1, a framework for Object/Relational Mapping
(ORM), that automatically maps the objects used within Artemis to relations
stored in the database [BK05]. Hibernate offers different caching strategies
and integrates with several caching providers [JF11]. The cache consists
of different regions (e.g., all cached objects of a class form a region) and
developers can apply different configuration options or each region.

Artemis uses EhCache2, a commonly used cache provider for Hibernate
[Win13]. We first tried to manually manage the cache for the distributed
system (e.g., by invalidating regions on all instances if one instance updated
a region), but this led to a significant overhead during development as we
had to write much code manually. Every time a developer applied a change
to the database and thus to the cache, he had to manually clear the affected
cache regions, making the code both hard to write and maintain. Although
EhCache natively supports distributed caching, its usage is not well docu-
mented, especially in combination with Spring and Hibernate.

Hence, we decided to use Hazelcast3 as cache provider as it supports

1https://hibernate.org
2https://www.ehcache.org
3https://hazelcast.com

39

https://hibernate.org
https://www.ehcache.org
https://hazelcast.com

CHAPTER 5. OBJECT DESIGN

distributed caching without manual management of the cache and provides
proper documentation4. Hazelcast is an in-memory data grid that uses a
peer-to-peer architectural style [Joh15]. Thus, We added the discovery ser-
vice described in section 4.3 to allow Hazelcast to form a cluster containing
all instances of the application server.

Hazelcast not only integrates into Spring and Hibernate but also provides
common data structures like maps that all instances of the cluster can access.
Artemis uses them for caching that is not directly integrated into Spring and
Hibernate, e.g., they are used to store the submissions during live quizzes,
as described in section 3.3.2. Therefore, all instances of the cluster access
the same submissions, so that in case one instance fails, other instances still
have a copy stored.

Figure 5.1 shows the shared usage of the database and the cluster built
by Hazelcast to offer a distributed cache. Every instance of the application
server is connected to every other instance to broadcast updates to the cache
to ensure a consistent state. The cache acts as a proxy and receives all
requests that interact with the database. It can either provide the requested
data from the local cache (thus preventing a request to the database) or, if
the data is not present locally, request the data from the database (and store
the data in the local cache to prevent additional requests), implementing a
proxy pattern.

«subsystem»
:Database Server

«subsystem»
instance1:Artemis
Application Server

«component»
Cache

«subsystem»
instance2:Artemis
Application Server

«component»
Cache

«subsystem»
instance3:Artemis
Application Server

«component»
Cache

Figure 5.1: Shared usage of one database by three instances of the application
server and communication within the distributed caching cluster.
Every instance of the application server directly communicates with
the database server and communicates with all other instances to
handle cache invalidation.

4e.g., https://reflectoring.io/spring-boot-hazelcast, https://hazelcast.

com/blog/spring-boot and https://www.baeldung.com/java-hazelcast

40

https://reflectoring.io/spring-boot-hazelcast
https://hazelcast.com/blog/spring-boot
https://hazelcast.com/blog/spring-boot
https://www.baeldung.com/java-hazelcast

5.2. DELEGATING SCHEDULED TASKS

5.2 Delegating scheduled tasks

As we already shortly described in section 4.7, we use different scheduling
algorithms for different use-cases, which we split into two categories: primary
instance algorithms and failover algorithms, which we will describe in this
section.

5.2.1 Primary instance

Artemis has to schedule a wide range of tasks. Some tasks handle clean up
of no longer required artifacts, especially in combination with external sys-
tems like the Version Control Server (VCS) and the Continuous Integration
Server (CIS). Artemis typically executes these tasks at fixed times (e.g., at
3 am every day or at 5 am every Friday), independent if there are artifacts
present which Artemis has to remove. Artemis can schedule these tasks at
the system’s startup as the exact time of execution is known.

It schedules other tasks dynamically, especially tasks that individual ex-
ercises require. One example of this is the execution of unlocking and locking
operations for student repositories. Students should not be able to perform
submissions before the exercise/exam starts or after it ends. Instructors
should create the repositories on the Version Control Server and build plans
on the Continuous Integration Server before the exam starts to prevent issues
during the exam if Artemis has to create all repositories at once.
Artemis, the VCS, and CIS need approximately 5 seconds when creating a
repository and the corresponding build plan for a single student. If 1,000 stu-
dents participate in an exam and the instructors create three programming
exercises per student, the system has to create 3,000 repositories. Artemis
can create approximately one repository per thread per five seconds; so, a
machine with 12 threads can create roughly 12 exercises per five seconds,
which corresponds to three exams. The creation of 1000 exams therefore
takes 5s ∗ 1000

3
≈ 1667s, which is more than 25 minutes. As the system can

only create the last repository after more than 25 minutes, the student own-
ing this repository can only start working on it after a substantial amount of
his/her working time passed. Instructors, therefore, pre-generate the reposi-
tories to ensure that all students can work on their submission once the exam
starts.

Students should not be able to access the repositories and build plans
before the exam starts. Artemis can prevent this by comparing the current
time with the start date of the exam before displaying the files in the code
editor. However, it cannot prevent students from directly accessing their

41

CHAPTER 5. OBJECT DESIGN

repository on the VCS. The system has to lock the repositories to ensure that
students cannot access their pre-generated exam repositories until Artemis
unlocks them a few minutes before the exam starts.

Artemis has to schedule this unlock task for each exercise independently
and the time of the unlock operation can also change while the system is
running. It should also lock the repository once the exam is over to prevent
students from changing code after their working time is over.

We decided that only one instance of the applications server (the pri-
mary instance) is responsible for scheduling these tasks. Other instances
(secondary instances) will not execute scheduled tasks. Administrators make
this distinction using a Spring profile5 called scheduling, which is only active
on the instance that should handle the scheduling (for which the administra-
tors of the system have to take care of).

Delegation of scheduled tasks

Artemis has to support updates for scheduled tasks as the execution time of
tasks is not always known at the startup of a system but can change during
the runtime. Instructors introduce these changes by creating, updating, or
deleting exercises/exams. As Artemis does not know to which instance the
load balancer will connect an instructor (as we described in section 4.4), every
instance needs to be able to create, update, and delete scheduled tasks. This
raises an issue as only the primary instance can actually schedule tasks.

We solve this issue by implementing a proxy pattern: Secondary instances
forward the scheduling of the tasks to the primary instance. Figure 5.2 shows
this proxy pattern with an example for scheduling programming exercises:
The ProgrammingExerciseService, which is present both at primary and
secondary instances, uses a provided Scheduler to schedule the tasks of an
updated/created/deleted programming exercise. It does not know whether
the provided Scheduler is scheduling the tasks or delegating them to a dif-
ferent instance. A RealScheduler (present on the primary instance) can
immediately schedule the tasks. A ProxyScheduler (present on the sec-
ondary instances) delegates the operation to the RealScheduler, which then
performs the scheduling.

We use Hazelcast topics6 for this delegation as they allow instances to
subscribe to these topics and publish data for these topics. Hazelcast then
forwards the published to the registered listeners, which can execute applica-
tion logic depending on the received data. Different listeners (subscriptions

5Spring profiles allow parts of the code to only be executed if the specific profile is
active. The profiles will be set at the startup of the system using configuration options.

6https://hazelcast.org/use-cases/messaging

42

https://hazelcast.org/use-cases/messaging

5.2. DELEGATING SCHEDULED TASKS

Scheduler

+ scheduleProgrammingExercise(exercise)

SchedulerProxy

+ scheduleProgrammingExercise(exercise)

RealScheduler

+ scheduleProgrammingExercise(exercise)

ProgrammingExerciseService

Figure 5.2: Example usage of the Scheduler with delegation. The
ProgrammingExerciseService wants to schedule an operation and
uses the Scheduler to do so. Either the RealScheduler immediately
schedules the task or the SchedulerProxy delegates the task.

to different topics) can execute different logic.

The primary instance registers one listener for each topic (which repre-
sents one type7 of possible update). Secondary instances will then publish the
exercise’s identifier to the corresponding topic, allowing the primary instance
to receive the identifier, fetch the exercise from the database and execute the
logic to create, update, or delete scheduled tasks based on the exercise and
context.

Using this approach, we solve the issue that every instance should be
able to schedule tasks, but only one instance should actually execute these
scheduled tasks.

5.2.2 Failover

For live quizzes, Artemis uses a failover strategy. Hazelcast offers a scheduled
executor service8 that allows tasks to be registered and executed either on
one, several, or all instances within a Hazelcast cluster. We configured the
executor service to execute the task only on the instance that is the first
member of the cluster and not on members that join later. The instance of
the application server that receives the request to save a submission from a
user stores the submission into a map. This map is shared using Hazelcast’s
distributed maps. Every instance can add entries to/update entries in this
map. Once the live quiz is over, the instance that started first (usually the
primary instance as described in section 5.2.1) will process the entries in the
map (as the executor service selects it). This instance then evaluates the
submissions and saves the submissions and results in the database.

7Possible types are e.g., the creation of a programming exercise or the deletion of a
text exercise.

8https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/

scheduledexecutor/IScheduledExecutorService.html

43

https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/scheduledexecutor/IScheduledExecutorService.html
https://docs.hazelcast.org/docs/latest/javadoc/com/hazelcast/scheduledexecutor/IScheduledExecutorService.html

CHAPTER 5. OBJECT DESIGN

5.3 Shared storage

A Network File System (NFS) implements the synchronization of the user
content9 that allows different machines to access shared storage [SGK+85].
Once one instance writes a file to the shared storage, the other instances can
access it. Hence, one instance checking out a repository allows all instances
to apply changes to the repository.

The system uses the same setup for the other file types it stores in the file
system, such as submissions to file upload exercises. Only instances of the
application server need to access the shared file system as only they access
user content stored in file storage. The other subsystems (database server,
broker, and discovery service) do not need to access this storage.

We also only store data on the shared file system that is relevant for all
nodes, so we e.g., do not store configuration files, .war files (the executable
that contains the application server), or log files in the shared storage. Every
instance has an own version of it (which may also differ from each other e.g.,
in the case of configuration and log files).

5.4 WebSocket broker

We use Apache ActiveMQ Artemis10 (later called ActiveMQ) as the Web-
Socket broker. ActiveMQ supports a wide range of messaging protocols, in-
cluding the Advanced Message Queuing Protocol (AMQP), Message Queuing
Telemetry Transport (MQTT), and STOMP (see 2.3). The Apache Software
Foundation develops ActiveMQ in Java.

Spring already includes a simple broker used by default when processing
WebSocket messages, but this broker does not support a deployment with
multiple instances that share the same user base. It can be replaced by an
external broker such as ActiveMQ11.

We also tested other messaging systems, especially Apache Kafka12, but
as Kafka does not support STOMP, we decided to use ActiveMQ.

Redis13, an in-memory data structure store that provides a message bro-

9Data that users of the system generate such as uploaded files or repositories. This
does not include files that the systems needs to run like executables and configuration
files.

10https://activemq.apache.org/components/artemis
11https://docs.spring.io/spring/docs/5.2.7.RELEASE/spring-framework-

reference/web.html#websocket-stomp-handle-broker-relay
12https://kafka.apache.org
13https://redis.io

44

https://activemq.apache.org/components/artemis
https://docs.spring.io/spring/docs/5.2.7.RELEASE/spring-framework-reference/web.html#websocket-stomp-handle-broker-relay
https://docs.spring.io/spring/docs/5.2.7.RELEASE/spring-framework-reference/web.html#websocket-stomp-handle-broker-relay
https://kafka.apache.org
https://redis.io

5.5. WEBSOCKET SECURITY CHECKS

ker, is also not applicable for Artemis. Redis heavily uses a publish/subscribe
model, which has similarities to STOMP but is not compatible. There are
efforts to integrate STOMP support to Redis (e.g., using plugins), but as this
is still experimental and not well documented, we decided not to use Redis.

5.5 WebSocket security checks

As we outlined in section 4.6, WebSocket subscriptions of a topic should
only be possible if the user is allowed to access the topic. To implement
these checks, we extended the existing WebSocket interceptor to check every
subscription before executing it.

The application server receives a request and first identifies its type (e.g.,
if it is a request to subscribe to a topic or a message that should be handled
by the server). If the request is of type SUBSCRIBE, the topic to which the
client wants to subscribe to gets extracted. If there are security checks in
place for this particular topic, then these checks get executed. The checks
can be on a user- and group-level as some topics should only be accessible for
a specific user (e.g., the owner of a participation). In contrast, other requests
should be available for a group of users (e.g., all instructors of a course).

If the user is allowed to subscribe to the specific topic, the server adds
the subscription. If the user is not allowed, the application server does not
add the subscription but logs the incident.

5.6 WebSocket message grouping

Before the start of this thesis, clients create multiple WebSocket subscriptions
for similar requests. This means that the client of one student will, e.g.,
create one subscription per exercise where he expects a result (meaning an
exercise that is over and where he does not have a result yet). Although
this is not problematic for courses with a small number of students and only
a few exercises, in courses with several hundred or thousand students and
e.g., ten unrated exercises per student, this causes many subscriptions the
application server must handle.

For instructors, this behavior is even worse as there are pages displaying
multiple student who participated in a particular exercise. This view updates
itself automatically as soon as a new result is available for any of the shown
students. The instructor’s client has to create one subscription per student
(as it can only subscribe to participations, which are bound to a student).
If the client displays 50 students with their corresponding results, it creates

45

CHAPTER 5. OBJECT DESIGN

50 subscriptions which the application server all has to handle. Figure 5.3
shows the score page for a quiz exercise. The client creates 50 subscriptions
as it shows 50 results and expects updates for every result.

Figure 5.3: Score page for a quiz exercise. Clients of instructors create one sub-
scription per participation (thus per student).

We optimize this behavior by grouping the messages into two topics so
that a client only has to subscribe once: All students receive their updates of
results through a personal topic. One personal topic now receives results
from multiple exercises (that might even be in different courses). The client
then extracts the participation to which the results belongs and triggers the
corresponding logic.
We cannot use this personal topic for instructors as they should be able to
receive updates for other users (their students). To solve this issue, the client
of instructors now subscribe to new results on an exercise level to receive
all new results belonging to this exercise. The client then again extracts the
participation from the received data and triggers the correct logic.

Figure 5.4 shows the relationship between the grouped messages: Before
applying the changes, there was one subscription per participation. Artemis
now groups them either per user (for students) or per exercise (for instruc-
tors), leading to a reduced amount of subscriptions.

46

5.7. DISCOVERY

Exercise

Participation

* participations

exercise *

Submissionsubmissions

participation

1

*

Result

submission 1

result

0..1

1 participation

result *

User 1

student *

participation

Figure 5.4: Relationship of exercises, participations, submissions, results and
users. Instructors create exercises in which students participate.
Students submit multiple submissions which are associated to their
participation and receive results for their submissions.

We also applied this update from many subscriptions to few with regard
to submissions.

5.7 Discovery

As multiple instances of the application server should find each other to create
the distributed caching cluster without further configuration, a discovery
service is required.

The software we use to run the discovery service is JHipster Registry14, a
JHipster application that includes Spring Cloud Netflix Eureka and Spring
Cloud Config. Spring Cloud Config allows the management of configuration
files for a large number of instances, but Artemis does currently not use it.
Spring Cloud Netflix Eureka allows applications to register themselves and
fetch other registered instances as described above. Netflix develops Eureka15

and uses it for the management of servers within AWS16 to allow for load
balancing and fail-over [LSB18].

Eureka can also deal with a more complex deployment, including several
regions where services are located (e.g., us-east, us-west, and europe-central),

14https://github.com/jhipster/jhipster-registry
15https://github.com/Netflix/eureka
16Amazon Web Services, a cloud-computing platform from Amazon.

47

https://github.com/jhipster/jhipster-registry
https://github.com/Netflix/eureka

CHAPTER 5. OBJECT DESIGN

but we do not need these features as we deploy Artemis at one region.

Figure 5.5 shows the instance overview with 11 running instances. The
identifier of the instances can be seen as well as the status of every instance,
including version, port and running Spring profiles.

Figure 5.5: Instance overview of the discovery service with 11 instances of the
application server. The discovery service also provides administra-
tors with additional meta-data like versions used by the different
instances.

Administrators can also use the discovery service to inspect each reg-
istered instance’s logs and metrics and the discovery service itself. Figure
5.6 shows the metrics of one instance (currently instance 1). JHipster Reg-
istry displays the memory and CPU usage, the current threads within the
java application and the HTTP requests, and their frequency and average
response time. Administrators can navigate between different instances of
the application server using a dropdown on the top right.

5.8 Monitoring

Monitoring allows administrators of the system to get an overview of the
system’s status and makes deviations from the expected state visible. The
monitoring system collects different types of metrics that are either provided
by an application that runs on the (virtual) machines to receive information

48

5.8. MONITORING

Figure 5.6: Metrics overview within the discovery service. Administrators use
these metrics to validate the system’s status.

about the system’s used resources or provided by the application that it
should monitor directly (here the application server).

We use Prometheus17, an open-source, metrics-based monitoring sys-
tem, to collect the metrics provided from the different systems [Bra18].
Prometheus collects data and Grafana18, a tool that supports data from a
wide range of data sources like InfluxDB, MySQL, PostgreSQL, and Prometheus,
visualizes it. Prometheus sends alerts to administrators to inform them about
problems with the monitored system.

5.8.1 Machine monitoring

We use the tool node-exporter 19 to export metrics from the machines that
run Artemis. These metrics include e.g., CPU-, file system- & memory-usage,
the number of open processes, and network statistics.

We need these metrics, especially for parts of the system that do not
export more detailed usage like the database server, the load balancer, and
the broker. These metrics are also relevant for subsystems that expose cus-
tom metrics (like the application server), as the application server cannot
export metrics if it is unavailable. The metrics exposed by the application

17https://prometheus.io
18https://grafana.com
19https://github.com/prometheus/node_exporter

49

https://prometheus.io
https://grafana.com
https://github.com/prometheus/node_exporter

CHAPTER 5. OBJECT DESIGN

server might not be as detailed as they do not measure the hardware metrics
accurately.

Prometheus periodically collects the metrics node-exporter provides within
a HTTP-endpoint.

Figure 5.7 shows a subset of the hardware metrics Prometheus collects
for every virtual machine. The figure shows the hostname, number of CPU
cores, CPU usage, and memory usage for the virtual machines that run the
broker, database, and load balancer. Other metrics like the disk space usage,
disk throughput, context switches, and network traffic are also available.

Figure 5.7: Hardware metrics of the virtual machines running the broker,
database and load balancer. Administrators monitor the CPU and
memory usage.

5.8.2 Application monitoring

Artemis supports some metrics by default as the spring-metrics dependency20,
which Artemis uses, includes them. These metrics, however, only handle gen-
eral metrics that apply for all/most Spring applications like HTTP request
duration and CPU/memory usage.

We extended the existing metrics to include custom metrics like the num-
ber of users connected to a particular instance of the application server and
the health of the external systems Artemis uses.

20https://docs.spring.io/spring-metrics/docs/current/public/prometheus

50

https://docs.spring.io/spring-metrics/docs/current/public/prometheus

5.9. IP HASHING IN LOAD BALANCER

Figure 5.8 shows custom metrics (the number of users connected to an
instance of the application server) that Prometheus collects. Artemis ex-
poses the application metrics via an HTTP endpoint and Prometheus pulls
them periodically. We configured Artemis only to allow access to this end-
point from a predefined IP-address so that only Prometheus can access these
metrics.

Figure 5.8: Application metrics of the application server. The user count on all
instances increases while students participate in an exam on Artemis.
The user count decreases once the exam is over.

5.9 IP hashing in load balancer

We want to distribute the load for the application server instances equally
(with respect to their corresponding weight). As we also want one user to be
connected to the same instance if possible (we can, however, not guarantee
it), we configured a hashing method within the load balancer to force “sticky
sessions”.

nginx21, the load balancer, supports several methods to select the re-
sponsible instance for an incoming request, including round-robin and least
connections22.

21https://nginx.org
22https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-

balancer/#method

51

https://nginx.org
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/#method
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/#method

CHAPTER 5. OBJECT DESIGN

These methods do not support sticky sessions. Thus we decided to use the
ip hash method, where the first three octets of an IPv4-address/the whole
IPv6-address get hashed. nginx will then connect addresses with the same
hash to the same instance. This ensures that multiple requests from one user
will be sent to the same server as long as his/her IP-address stays the same.

We later decided to use the more generic hash method, which supports a
wide range of attributes of a request, like the request URI or the used remote
IP-address. When using hash $remote addr as a load-balancing method,
the behavior is the same as with the ip hash method, but all four octets of
an IPv4-address get hashed, leading to a more equally distributed load.

52

Chapter 6

Case Study

Several universities and institutions use Artemis, but as the Chair for Ap-
plied Software Engineering (ASE) at TUM develops Artemis, it has the most
advanced setup and, as far as we know, the most users.

In this chapter, we will show how we moved Artemis to a deployment
with multiple instances, especially for the exam mode that students used for
examinations during the summer term 2020.

6.1 Artemis application server

We configured different weights for the Artemis application server instances
as the underlying hardware varies, as we suggested in section 4.4. More
powerful instances have often three times as much CPU cores as smaller
instances, thus we assign the larger instances with a more significant weight.

Table 6.1 shows the assignment of weights for the deployment that we
used during exams. We assigned one unit of weight for every four virtual
CPUs the underlying virtual machine has as Artemis is more intense in its
CPU usage in comparison to its memory usage. Table 6.1 also shows who
hosts the instances: The instance with id node1 is hosted by the RBG1 and
provided the only instance before we performed the horizontal scaling. The
RBG also hosts node2 - node7 as these virtual machines were available at
short notice once the Artemis project leaders decided to implement the exam
mode.

The Chair for Applied Software Engineering2 (ASE) at TUM hosts node8
- node11 on dedicated machines it bought for the Artemis exam mode. We

1Rechnerbetriebsgruppe, the service group that maintains the infrastructure at the
faculties for Computer Science and Mathematics at TUM

2https://ase.in.tum.de

53

https://ase.in.tum.de

CHAPTER 6. CASE STUDY

could only add these nodes later as these dedicated machines have higher
provisioning times compared to virtual machines on existing hardware.

By splitting the hosting of the instances, we decrease the dependence on
other systems. Systems that use virtual machines on the same hardware in
the data center of the RBG can impact the performance of the instances of
the application server hosted by the RBG. We can mitigate this performance
loss by manually increasing the weight of the instances hosted by ASE once
we detect such service degradation.

Instance Id #CPU cores Available RAM in GB Weight Hosted by
node1 12 24 3 RBG
node2 4 8 1 RBG
node3 4 8 1 RBG
node4 4 8 1 RBG
node5 4 8 1 RBG
node6 4 8 1 RBG
node7 4 8 1 RBG
node8 12 64 3 ASE
node9 12 64 3 ASE
node10 12 64 3 ASE
node11 12 64 3 ASE

Table 6.1: Mapping of weights to the different instances of the Artemis appli-
cation server depending on the available resources. Instances with a
higher number of CPU cores receive a larger weight.

6.2 Performance evaluation

We will focus on the graded online exercise of the lecture Introduction to
Software Engineering in the summer term 2020 that took place on July 27,
2020.

1,288 students participated in the exam that started at 08.00 am and
ended at 09.40 am for most students. Some students had an extended work-
ing time due to disadvantage compensations, but we will only focus on the
requests that Artemis processed from 08.00 am to 09.40 am as most students
could not submit after 09.40 am.

Setup

We used the setup described above with 11 instances of the application server
and one instance of the load balancer, database server, broker, and discovery
service.

54

6.3. FAILURE HANDLING

Processing times

The students submitted 43,658 answers for text exercises, 45,159 answers
for modeling exercises, and 21,120 answers for quiz exercises during the 100
minutes that we will focus on for this analysis. The client automatically saves
every 30 seconds if there are unsaved changes and saves the current exercise
when navigating to a different exercise.

Table 6.2 shows the average processing time as well as the 0.5-, 0.75, 0.9-,
0.95- and 0.99-quantiles.

Type Average 50% 75% 90% 95% 99%
Text 48ms 43ms 47ms 53ms 62ms 217ms
Modeling 51ms 44ms 48ms 55ms 67ms 279ms
Quiz 60ms 53ms 59ms 67ms 80ms 380ms

Table 6.2: Average and 0.5-, 0.75, 0.9-, 0.95- and 0.99-quantiles of the processing
duration of the text, modeling, and quiz exercises during the EIST
graded online exercise.

Figures A.1, A.2, and A.3 show the processing duration of the text-,
modeling, and quiz-exercises. All figures show that requests took longer at
the start of the exam, but after circa 15 minutes, most of the requests took
less than 100ms.

Artemis could, therefore, fulfill the requirements concerning performance.

6.3 Failure handling

During the development of the exam mode, developers introduced some bugs
within the application server as they could not test all features in all scenarios
due to time limitations. This caused errors where database queries that
load large amounts of connected objects, cause an unexpected high memory
usage. The memory usage caused Artemis to either become unresponsive for
several minutes or crash. The score page in the exam overview contained
such a problematic query. The memory usage went from less than 1GB (that
Artemis usually uses even with several hundred users) to 8GB (the maximum
that we assigned to the process).

On July 6, 2020, at 03.15 pm, this problematic query was executed for
the exam of the course IN00033, which took place on July 4, 2020. This
caused one instance of Artemis to become unavailable, sot that all requests

3Introduction to Informatics 2

55

CHAPTER 6. CASE STUDY

coming to Artemis had to be answered by a different instance. We only had
two instances in the system at the time of the incident, so that all requests
had to be answered by the second, remaining instance.

As the course IN00014 held an exam on July 6, 2020 at 04.15 pm, only 1
hour after the incident, Artemis needed to be available for this exam. As far
as we know, the failure handling went as expected so that the load balancer
reconnected all users of the failing instance to the remaining instance. Users
reported no problems and once we restarted Artemis, the users began con-
necting to both instances again. The horizontal scaling combined with the
failure handling saved us from significant problems as we could ensure that
the system was available.

The same problem also occurred due to a faulty query when evaluating
quiz exercises for exams, which also caused Artemis to become unavailable
due to the high memory usage when executed for an exam with a large
number of students. The failure handling here also went as expected. The
load balancer reconnected all users connected to the faulty instance to one of
the ten other instances that we deployed at the time the incident occurred.

6.4 File System

We used a Network File System (NFS) provided by the IT-group of the ASE
chair. Despite some concerns at the beginning that we had due to a possible
bottleneck of the file system, the NFS fulfilled the performance requirements
without problems.

We could locate some issues in the logic of the application server, which
caused that some lock-files5 were created and never removed, but this was
not a problem of the NFS, but of the existing application server code. The
application server caused the issue when checking out a repository (e.g., so
that a student can use it in the online code editor), which caused the lock-files
to not always getting removed. This caused an issue as soon as a different
instance wanted to perform some requests on the same repository. We fixed
the issue by adding unlock-operations in the code of the application server.

4Introduction to Informatics 1
5Temporary files that a process creates when it interacts with a file to indicate that

other processes should not use the file. The process removes it once it no longer interacts
with this file.

56

Chapter 7

Summary

This chapter summarizes the results of this thesis. We first show the status
of the thesis by describing realized & open goals. We then conclude the
outcome of the thesis and show aspects of future work.

7.1 Status

We were able to implement to main goals for this thesis, as stated in the
requirements analysis chapter. We could not achieve some goals due to lack
of time.

The requirements can be grouped into three categories:

� We could fully implement these requirements.

� G# We could partially implement these requirements.

� # We could not implement these requirements.

Table 7.1 shows the status of the implementation of the non-functional
requirements.

Non-Functional Requirement Status
NFR1 Performance improvements
NFR2 Fault-tolerance of Artemis G#
NFR3 Adjust security checks for real-time communication G#
NFR4 Preserving simple deployment

Table 7.1: Status of the implementation of non-functional requirements. We
could fully implement NFR1 & NFR4 and partially implement NFR2
& NFR3.

57

CHAPTER 7. SUMMARY

7.1.1 Realized Goals

As described in chapter 3, we did not implement any functional requirements
within this thesis.

We realized NFR1 (Scalability), as shown in the case study for the ex-
ams/graded online exercises. We were not able to test Artemis with 10000
users. Problems can arise concerning the WebSocket connections, as the bro-
ker requires a substantial amount of resources for a large number of users.

We fulfilled NFR2 (Availability) for the application server instances as the
outage of one, or several, of them will not cause a system failure. However,
we could only partially implement it overall as outages of other parts of the
system can not be tolerated.

We implemented NFR3 (Security) for the most critical requests (that
could leak personal data such as results). Nevertheless, we did not implement
it for all topics that clients can subscribe to using WebSockets.

We realized NFR4 (Maintainability) as the distributed setup of the system
implemented for NFR1 & NFR2 is optional, as described in section 4.4.

7.1.2 Open Goals

Although we were able to implement the failure-tolerance for the application
server (which is the most common cause of failures), we could not make
every outage of a subsystem automatically resolvable, as stated in section
4.8.4. We also did not yet implement the security checks for all WebSocket
subscriptions.

A test of the scalability with 10,000 users still has to be performed to
ensure the system’s availability, even for very large courses. However, as we
currently do not have more than 2000 users recorded on record, we did not
yet perform this test.

We also did not use a unified scheduling approach for all components of
the system, as described in section 5.2, but used two different approaches
alongside each other. A unification of these approaches is missing but should
be aimed for as it decreases the complexity during the system’s development.

7.2 Conclusion

We solved the scaling of a web application, Artemis, on three levels:

� REST: We modified the cache provider and updated the database setup
by moving the database to its own machine

58

7.3. FUTURE WORK

� WebSocket: We added the broker so that actions performed on one
instance of the application server can reflect to users connected to a
different instance

� File System: We added a file system that allows all instances of the
application servers to access the same stored data

We also improved the monitoring tools and ensured a deployment that
administrators can manage without extensive intervention by adding the dis-
covery service.

We modified the existing WebSocket subscriptions to be less resource-
intensive (by grouping them) and more secure (by adding security checks for
relevant topics).

7.3 Future Work

Future work that extends this thesis is improving the availability by mak-
ing every subsystem redundant. We already prepared this for the discovery
service (so that several instances always update each other) and also started
to add this for the broker (again, so that are replicas that can take over if
one instance fails). However, we did not fully implement this yet due to time
limitations.

The scaling of the database is more complicated as design decisions have
to be made concerning the setup that the database should use: One possible
deployment is a primary/secondary setup using one server (primary) respon-
sible for all write-operations, whereas every server (primary and secondary)
can handle read-operations. The secondary than could take over the role of
the primary in case the primary fails.

Another point that one should look into is automatic failure recovery,
e.g., the restart of a subsystem if it fails without manual interactions. The
main challenge in this topic is to ensure the system’s consistency as a wrong
sequence of start operations might lead to a violation of the starting proce-
dure (as described in section 4.8.1), which can cause an inconsistent system.
One possible inconsistency would be that the system can not build its dis-
tributed caching cluster. Instead of one cluster containing all instances of the
application server, there might be several clusters that only contain subsets
of the instances.

59

Appendix A

Performance evaluation

The following figures belong to section 6.2 and focus on the processing time
of submissions during the EIST graded online exercise.

Figure A.1: Processing time of text submissions during the EIST graded online
exercise in milliseconds over time. The average processing time de-
creases as the exam progresses and is less than 100ms after the exam
has ended.

60

Figure A.2: Processing time of modeling submissions during the EIST graded
online exercise in milliseconds over time. The average processing
time decreases as the exam progresses and is less than 100ms after
the exam has ended.

61

APPENDIX A. PERFORMANCE EVALUATION

Figure A.3: Processing time of quiz submissions during the EIST graded online
exercise in milliseconds over time. The average processing time de-
creases as the exam progresses and is less than 100ms after the exam
has ended.

62

List of Figures

1.1 Current deployment with one application server, multiple ap-
plication clients, and their interfaces. Clients communicate
with the application server using REST and WebSockets (WS),
which stores data into the database server. 3

1.2 Aimed deployment with several instances of the application
server with respect to the offered interfaces (REST, WebSocket
(WS)) and the LoadBalancer subsystem. The LoadBalancer
distributes requests from application clients to different in-
stances of the application server. 5

2.1 Vertical scaling of a system by using hardware with more/-
faster resources. Costs are exemplary prices taken from Ama-
zon Web Services for one month for t2.small, t2.medium and
t2.xlarge EC2 instances. 9

2.2 Horizontal scaling by adding more machines to the system.
Costs are exemplary prices taken from Amazon Web Services
for one month for t2.small EC2 instances. 10

3.1 Current deployment with one application server, multiple ap-
plication clients, and their interfaces. Clients communicate
with the application server using REST and WebSockets (WS),
which stores data into the database server. 14

3.2 Statistic showing the user count during the EIST lecture on
July 16, 2020. The user count increases from less than 200 at
08.00 am to over 1,300 at 08.15 am. The count decreases once
the exercises are over, but decrease again when new exercises
start, until the lecture ends at 11.00 am. 17

63

LIST OF FIGURES

3.3 Aimed deployment with several instances of the applications
server with respect to the offered interfaces (REST, WebSocket
(WS)) and the subsystems LoadBalancer, discovery service
and Broker. The LoadBalancer distributes requests to the dif-
ferent instances of the application server. The Broker allows
the instances of the application server to exchange WebSocket
messages. The discovery service provides information of cur-
rently running instances of the application server. 18

3.4 Communication diagram showing a simplified communication
procedure during a quiz exercise. An instructor starts the quiz
on one instance of the application server, which this instance
relays to a second instance. A student then saves a submission
on one instance of the application server using his/her client,
which then replicates the submission to a second instance. . . 21

4.1 Communication diagram with a sample usage of the broker as
relay: instance1 tries to send a message to client1. instance1
relays the message to the broker after failing to deliver the mes-
sage directly. The broker forwards the message to instance2,
which can deliver the message, as client1, as this client is con-
nected to instance2. 25

4.2 Startup process of two instances of the application server in
combination with the discovery service. An instance regis-
ters itself to the discovery service during startup. A second
instance fetches the registered instances and uses this infor-
mation to establish a connection to the first instance. 26

4.3 An architectural model of a web infrastructure that is designed
to scale. Components are loosely coupled and can be scaled
independently [Erb12]. 28

4.4 Simplified deployment on one machine, e.g., for a testing en-
vironment. The load balancer communicates with the appli-
cation server, which uses the database as storage. 29

4.5 More complex deployment on several machines within the uni-
versity’s data center. We moved the existing load balancer and
database server subsystems to own machines and deployed ad-
ditional instances of the application server, the discovery ser-
vice and broker subsystems on separate machines. 30

4.6 Dependency graph of the subsystems. The application server
depends on the database, broker and discovery service. The
load balancer (soft)-depends on the application server. 35

64

LIST OF FIGURES

5.1 Shared usage of one database by three instances of the applica-
tion server and communication within the distributed caching
cluster. Every instance of the application server directly com-
municates with the database server and communicates with
all other instances to handle cache invalidation. 40

5.2 Example usage of the Scheduler with delegation. The Pro-

grammingExerciseService wants to schedule an operation
and uses the Scheduler to do so. Either the RealSched-

uler immediately schedules the task or the SchedulerProxy

delegates the task. 43

5.3 Score page for a quiz exercise. Clients of instructors create
one subscription per participation (thus per student). 46

5.4 Relationship of exercises, participations, submissions, results
and users. Instructors create exercises in which students par-
ticipate. Students submit multiple submissions which are as-
sociated to their participation and receive results for their sub-
missions. 47

5.5 Instance overview of the discovery service with 11 instances
of the application server. The discovery service also provides
administrators with additional meta-data like versions used by
the different instances. 48

5.6 Metrics overview within the discovery service. Administrators
use these metrics to validate the system’s status. 49

5.7 Hardware metrics of the virtual machines running the broker,
database and load balancer. Administrators monitor the CPU
and memory usage. 50

5.8 Application metrics of the application server. The user count
on all instances increases while students participate in an exam
on Artemis. The user count decreases once the exam is over. . 51

A.1 Processing time of text submissions during the EIST graded
online exercise in milliseconds over time. The average pro-
cessing time decreases as the exam progresses and is less than
100ms after the exam has ended. 60

A.2 Processing time of modeling submissions during the EIST graded
online exercise in milliseconds over time. The average pro-
cessing time decreases as the exam progresses and is less than
100ms after the exam has ended. 61

65

LIST OF FIGURES

A.3 Processing time of quiz submissions during the EIST graded
online exercise in milliseconds over time. The average pro-
cessing time decreases as the exam progresses and is less than
100ms after the exam has ended. 62

66

List of Tables

2.1 Selected STOMP commands with selected parameters. The
client can connect to the server, which the server acknowl-
edges. The client can then subscribe to topics and both client
and server can send arbitrary messages. 13

4.1 Access control matrix showing the subscription permissions
for WebSocket topics. 33

6.1 Mapping of weights to the different instances of the Artemis
application server depending on the available resources. In-
stances with a higher number of CPU cores receive a larger
weight. 54

6.2 Average and 0.5-, 0.75, 0.9-, 0.95- and 0.99-quantiles of the
processing duration of the text, modeling, and quiz exercises
during the EIST graded online exercise. 55

7.1 Status of the implementation of non-functional requirements.
We could fully implement NFR1 & NFR4 and partially imple-
ment NFR2 & NFR3. 57

67

Bibliography

[BD09] Bernd Bruegge and Allen H Dutoit. Object Oriented Software
Engineering Using UML, Patterns, and Java. Prentice Hall,
2009.

[BK05] Christian Bauer and Gavin King. Hibernate in action, vol-
ume 1. Manning Greenwich CT, 2005.

[Bra18] Brian Brazil. Prometheus: Up & Running: Infrastructure and
Application Performance Monitoring. O’Reilly Media, Inc., 2018.

[CY19] Franciso Javier De las Casas Young. Extension of Quiz Ex-
ercises in ArTEMiS, Technical University of Munich (TUM),
2019.

[DGV+12] Sourav Dutta et al. Smartscale: automatic application scaling
in enterprise clouds. In 2012 IEEE Fifth International Confer-
ence on Cloud Computing, pages 221–228. IEEE, 2012.

[DGV+14] Gargi Banerjee Dasgupta et al. Dynamically scaling multi-tier
applications vertically and horizontally in a cloud environment,
2014. US Patent 8,756,610.

[Don17] Jason A Donenfeld. WireGuard: Next Generation Kernel Net-
work Tunnel. In NDSS, 2017.

[Erb12] Benjamin Erb. Concurrent programming for scalable web ar-
chitectures, 2012. doi: 10.18725/OPARU-2423.

[Erk12] Jussi-Pekka Erkkilä. Websocket security analysis. Aalto Uni-
versity School of Science:2–3, 2012.

[FM11] Ian Fette and Alexey Melnikov. The WebSocket Protocol, 2011.

[FT00] Roy T Fielding and Richard N Taylor. Architectural styles and
the design of network-based software architectures, volume 7.
University of California, Irvine Irvine, 2000.

68

https://doi.org/10.18725/OPARU-2423

BIBLIOGRAPHY

[JF11] Wang Jing and Rui Fan. The research of Hibernate cache tech-
nique and application of EhCache component. In 2011 IEEE
3rd International Conference on Communication Software and
Networks, pages 160–162. IEEE, 2011.

[Joh15] Mat Johns. Getting Started with Hazelcast. Packt Publishing
Ltd, 2015.

[KAEC+18] Jakub Krzywda et al. Power-performance tradeoffs in data cen-
ter servers: DVFS, CPU pinning, horizontal, and vertical scal-
ing. Future Generation Computer Systems, 81:114–128, 2018.

[KNO+02] Panos Kalnis et al. An Adaptive Peer-to-Peer Network for Dis-
tributed Caching of OLAP Results. In Proceedings of the 2002
ACM SIGMOD international conference on Management of
data, pages 25–36, 2002.

[KS18] Stephan Krusche and Andreas Seitz. ArTEMiS: An automatic
assessment management system for interactive learning. In Pro-
ceedings of the 49th ACM Technical Symposium on Computer
Science Education, pages 284–289, 2018.

[KSB+17] Stephan Krusche et al. Interactive learning: increasing student
participation through shorter exercise cycles. In Proceedings of
the Nineteenth Australasian Computing Education Conference,
pages 17–26, 2017.

[Lom15] Andrew Lombardi. WebSocket: lightweight client-server com-
munications. O’Reilly Media, Inc., 2015.

[LSB18] Andrew Leung, Andrew Spyker, and Tim Bozarth. Titus: in-
troducing containers to the Netflix cloud. Communications of
the ACM, 61(2):38–45, 2018.

[LSL+14] Chien-Yu Liu et al. Vertical/horizontal resource scaling mech-
anism for federated clouds. In 2014 International Conference
on Information Science & Applications (ICISA), pages 1–4.
IEEE, 2014.

[Mas11] Mark Masse. REST API Design Rulebook: Designing Consis-
tent RESTful Web Service Interfaces. O’Reilly Media, Inc.,
2011.

[MHP12] Peter Membrey, David Hows, and Eelco Plugge. SSL load bal-
ancing. In Practical Load Balancing, pages 175–192. Springer,
2012.

69

BIBLIOGRAPHY

[MNS+88] Steven P Miller et al. Kerberos authentication and authoriza-
tion system. In In Project Athena Technical Plan. Citeseer,
1988.

[Mon17] Josias Montag. Conducting Interactive Programming Exercises
in Online Courses. Master’s thesis, Technical University of Mu-
nich (TUM), 2017.

[MS93] Jim Melton and Alan R Simon. Understanding the new SQL:
a complete guide. Morgan Kaufmann, 1993.

[Sch18] Valentin Schlattinger. Extending ArTEMiS: Interactive Live
Quizzes in the Classroom. Master’s thesis, Technical University
of Munich (TUM), 2018.

[SGK+85] Russel Sandberg et al. Design and implementation of the Sun
network filesystem. In Proceedings of the Summer USENIX
conference, pages 119–130, 1985.

[SHS14] Dejan Skvorc, Matija Horvat, and Sinisa Srbljic. Performance
evaluation of websocket protocol for implementation of full-
duplex web streams. In 2014 37th International Convention on
Information and Communication Technology, Electronics and
Microelectronics (MIPRO), pages 1003–1008. IEEE, 2014.

[Sto] STOMP - The Simple Text Oriented Messaging Protocol. url:
https://stomp.github.io/.

[VST17] Maarten Van Steen and Andrew S Tanenbaum. Distributed sys-
tems. Maarten van Steen Leiden, The Netherlands, 2017.

[Wau20] Martin Wauligmann. Team-based Exercises in Artemis. Mas-
ter’s thesis, Technical University of Munich (TUM), 2020.

[Win13] Daniel Wind. Instant Effective Caching with Ehcache. Packt
Publishing Ltd, 2013.

[WSM13] Vanessa Wang, Frank Salim, and Peter Moskovits. Using Mes-
saging over WebSocket with STOMP. In The Definitive Guide
to HTML5 WebSocket, pages 85–108. Springer, 2013.

[YHM00] David J Yates, Abdelsalam A Heddaya, and Sulaiman A Mir-
dad. Method and system for distributed caching, prefetching
and replication, 2000. US Patent 6,167,438.

70

https://stomp.github.io/

	Introduction
	Problem
	Motivation
	Objectives
	Outline

	Background
	Scaling
	Caching
	Real-time communication

	Requirements Analysis
	Current System
	Deployment
	Security

	Proposed System
	System Models
	Scenarios
	Dynamic Model

	System Design
	Overview
	Design Goals
	Subsystem Decomposition
	Architectural style

	Hardware/Software Mapping
	Persistent Data Management
	Access Control
	Global Software Control
	Boundary Conditions
	Starting procedure
	Shutdown procedure
	Update procedure
	Failure handling

	Object Design
	Caching
	Delegating scheduled tasks
	Primary instance
	Failover

	Shared storage
	WebSocket broker
	WebSocket security checks
	WebSocket message grouping
	Discovery
	Monitoring
	Machine monitoring
	Application monitoring

	IP hashing in load balancer

	Case Study
	Artemis application server
	Performance evaluation
	Failure handling
	File System

	Summary
	Status
	Realized Goals
	Open Goals

	Conclusion
	Future Work

	Performance evaluation

