[

DEPARTMENT OF INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

Development of an IDE Plugin
for ArTEMIS

Alexander Ungar

D

[

DEPARTMENT OF INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics
Development of an IDE Plugin for ArTEMiS
Entwicklung eines IDE Plugins fiir ArTEMiS

Author: Alexander Ungar
Supervisor: Prof. Bernd Briigge, Ph.D.
Advisor: Dr. Stephan Krusche
Date: 17.02.2020

D

I confirm that this master’s thesis is my own work and I have documented
all sources and material used,

Munich, 17.02.2020 Alexander Ungar

Acknowledgements

I would like to use this opportunity to express my gratitude to everyone, who
has supported me during the last six months.

First of all, I would like to thank my advisor Dr. Stephan Krusche.
His feedback and insights not only shaped this thesis, but also me and my
views as a software developer. Despite being very busy and involved in many
projects, he always finds the time to show an interest in the work of his
students.

Beyond that, I would like to thank the whole Artemis developer team
and especially Thilo Behnke. I was always looking forward to our meetings
and working together on the platform. This experience would not have been
the same without the people I met.

I also want to thank my friends, in particular Denis, Samih and Sarah.
You have given me the motivation and strength to push through this tough
time.

Lastly, I want to thank my parents, who always had my back and never
doubted me, not only during the last few months, but during my entire time
at university.

Abstract

Artemis is an automated individual feedback system for interactive learn-
ing, which allows for the creation of programming exercises. Students, as well
as instructors can use an integrated online code editor to work on tasks in-
volving the exercise participation or administration. However, the editor is
missing advanced functionalities like code completion, live compilation, or
debugging. This can be overcome by using an IDE, which commonly offers
more sophisticated features. The alternative IDE setup introduces a me-
dia disruption as some actions require interacting with the Artemis client.
Instructors face additional difficulties since the administration of exercises
involves building source code from a combination of multiple repositories.

In this thesis, we combine both approaches to solve these limitations and
develop the IDE plugin Orion, which leads to an integrated user experience.
Orion unifies Artemis with a development environment by incorporating the
programming exercise administration and participation processes into the
IDE. Students are able to review Artemis results and feedback directly in
the IDE, while instructors are provided with the toolset to edit programming
exercises in one single IDE project. The plugin hides complex details of the
exercise workflow and lowers the entry barrier.

We developed a first prototype of Orion for IntelliJ and sent it to beta
users, who provided feedback for the formative improvements. Following the
release of the plugin, students and instructors in the course Introductions to
Software Engineering in the next semester can use Orion to work on Artemis
programming exercises without media disruptions. In the future, Orion can
be extended to integrate the code review process of teaching assistants. Hints
could be created and displayed directly in the IDE. Team based exercises in
Orion would allow students to collaboratively solve tasks inside multiple
IDEs.

Zusammenfassung

Die interaktive Lernplattform Artemis ermoglich das Erstellen von Pro-
grammieraufgaben, fiir welche Nutzer automatisiertes Feedback erhalten
konnen. Sowohl Studenten, als auch Kursleiter nutzen den integrierten onli-
ne Code Editor um Aufgaben zu l6sen und zu verwalten. Dem Editor selbst
fehlen jedoch Funktionen wie die automatische Code Vervollstandigung, Live
Kompilierung, oder Debugging. Eine IDE hat diese Nachteile nicht, da sie
typischerweise iiber ausgefeiltere Features verfiigt. Dieses alternative Setup
bringt jedoch einen Medienbruch mit sich, da manche Schritte Interaktionen
mit der Artemis Webanwendung zwingend erfordern. Kursleiter stehen vor
weiteren Schwierigkeiten, da die Administration von Aufgaben die Kombi-
nation von Code aus mehreren Repositories erfordert.

Mit der Entwicklung des IDE Plugins Orion 16sen wir diese Limitierungen
durch das Kombinieren beider Ansétze und schaffen somit eine einheitliche
Nutzererfahrung. Orion vereint Artemis mit einer Entwicklungsumgebung
indem Administrations- und Teilnahmeprozesse von Programmieraufgaben
in einer IDE eingebunden werden. Studenten wird die Analyse von Feedback
und Ergebnissen direkt in der IDE ermoglicht, wihrend Kursleiter das Tool-
set erhalten, durch welches sie Aufgaben in einem einzelnen IDE Projekt
bearbeiten kénnen. Das Plugin vereinfacht komplexe Abldufe und sinkt die
Einstiegshiirde fiir Anfanger.

Wir entwickelten einen ersten Prototypen von Orion fiir IntelliJ und
schickten ihn an Nutzer, deren Feedback fiir iterative Verbesserungen ge-
nutzt wurde. Nach der Veroffentlichung des Plugins kénnen Studenten und
Leiter des Kurses FEinfiihrung in die Softwaretechnik im néchsten Semester
Orion nutzen um an Programmieraufgaben in Artemis ohne Medienbriiche
teilzunehmen. Zukiinftig kann Orion um die Integration des Reviewprozesses
von Tutoren erweitert werden. Hinweise kénnten direkt in der IDE erstellt
und angezeigt werden. Teambasierte Aufgaben in Orion wiirden Studenten
die kollaborative Arbeit iiber mehrere IDEs ermdoglichen.

Contents

1 Introduction

1.1 Problem
1.2 Motivation
1.3 Objectives
1.4 Outline.

2 Background
2.1 Integrated Development Environments
2.2 Dependencies of Programming Exercises

3 Related Work

3.1 Test My Code
3.2 JetBrains Edu Tools
3.3 Coding Tools of the openHPI Platform

4 Requirements Analysis

4.1 Current Systemo
4.2 Proposed System
4.2.1 Functional Requirements
4.2.2 Nonfunctional Requirements
4.3 System Models Lo
4.3.1 ScenariosS
4.3.2 UseCase Model
4.3.3 Analysis Object Model
4.3.4 Dynamic Model

il

5 System Design

5.1 Overviewo
5.2 Design Goals

5.3 Subsystem Decomposition
5.3.1 Connector Components
5.3.2 Build Components

5.3.3 Exercise Components
5.4 Hardware Software Mapping

6 Object Design

6.1 Support for the IntelliJ IDE
6.2 Connecting Orion to Artemis
6.3 Connecting Artemis to Orion

6.4 Exercise services

6.5 Remote Build Result Processing

7 Summary

7.1 Status
7.2 Conclusion
7.3 Future Work

v

35
35
37
38
38
40
40
42

45
45
47
48
50
02

GUI Graphical User Interface

UI User Interface

CI Continuous Integration

CIS Continuous Integration System

VCS Version Controls System

DVCS Distributed Version Control System
SCCS Source Code Control System

IDE Integrated Development Environment
UI User Interface

IoC Inversion of Control

POJO Plain Old Java Object

MOOC Massive Open Online Course

TMC Test My Code

Chapter 1

Introduction

University courses face multiple challenges when teaching lectures at modern
institutions. Especially with the increasing number of enrolled students!,
delivering the same level of competence and knowledge to all participants
equally becomes a significant issue [MK10].

Solution approaches for the these problems are diverse. Evidence sug-
gests that implementing modern approaches such as providing students with
the possibility of an interactive learning experience, helps coping with the
growing lack of interest and lowered participation rate in courses [KvFA17].
Artemis, an open source?, automatic assessment management system for
interactive learning [KS18] is a concrete example of how modern learning
methods can both improve the acceptance rate of students and ease the
workload on tutors and instructors. Students can interact with the platform
by solving different types of exercises and receiving (partially automated)
feedback. Meanwhile, instructors are provided with an environment, which
enables them to create, release and assess exercises in a more compact and
less complex way.

Specifically interesting in the context of this thesis is the concept of pro-
gramming exercises, which was incorporated in the first version of the plat-
form and a leading motivation behind the initial development [MK16]. As-
sessing programming exercises in courses with hundreds, or even thousands
of participants is primarily limited by the number of instructors and teaching
assistants. Therefore, automating this process using a combination of con-
tinuous integration (CI) and version control services (VCS) allows courses to
scale more flexible while still being accessible to students on a beginner level.

https://de.statista.com/statistik/daten/studie/221/umfrage/
anzahl-der-studenten-an-deutschen-hochschulen/
’https://github.com/1slintum/Artemis

https://de.statista.com/statistik/daten/studie/221/umfrage/anzahl-der-studenten-an-deutschen-hochschulen/
https://de.statista.com/statistik/daten/studie/221/umfrage/anzahl-der-studenten-an-deutschen-hochschulen/
https://github.com/ls1intum/Artemis

CHAPTER 1. INTRODUCTION

This is achieved by making the underlying processes transparent to the user,
who only has to checkout the assignment’s code, work on it by e.g. using an
integrated development environment (IDE) and then submit it back to the
remote repository.

1.1 Problem

Currently, users have to always use the Artemis web client in order to in-
teract with the platform. While this might be a good approach for text,
quiz [SK18a] or even modeling exercises [SK18b, WK19], other components
of the application can be further improved. One example would be the
integrated online code editor [MK17, Beh19], which doesn’t have the exten-
sive toolkit and flexibility of a classic IDE like IntelliJ?. IDEs normally offer
a range of helpful features such as debugging frameworks, automatic code
completion, or live compilation, which have become a de facto standard in
software development.

After starting a programming exercise, Artemis creates a participation
for the student, which references a remote repository. This repository can be
manually downloaded and imported into an IDE in order to modify it and
solve the exercise. This involves performing multiple VCS operations (see
figure 1.1), generally with the help of an external VCS client like Source-
tree*. Especially novices to software engineering have never worked with a
VCS before and are therefore required to learn a range of new technologies
in addition to an already difficult programming language. This approach has
additional disadvantages, because it does not fit into the otherwise interlock-
ing workflow of Artemis. Figure 1.2 illustrates the fragmentation of use cases
between the IDE, Artemis and VCS. Interactions with the Artemis client are
mandatory since this is the only way to start an exercise and review test re-
sults. VCS operations are necessary to modify the source code of a user’s
personal repository and push the changes back to Artemis. While these lim-
itations can be circumvented by using the online code editor, the extended
capabilities of an IDE are an important factor when solving more complex
exercises. Hence, dealing with the resulting fragmentations and trade-offs is
unavoidable in some cases.

Furthermore, the missing connections mean that Artemis cannot forward
test results to the IDE, thus requiring users to switch back to the web client
if they want to analyze feedback. Students should be able to start, solve and

3https://www.jetbrains.com/idea/
‘https://www.sourcetreeapp.com/

https://www.jetbrains.com/idea/
https://www.sourcetreeapp.com/

1.

1.

PROBLEM

submit a programming exercise without having to switch between different
systems, i.e. without any media disruptions.

Instructor

System

Student

. > 1. Prepare
exercise

7a. Review
course
results

2.2 Copy &

2.1 Start
| exercise

configure
repository

2.3 Copy &
configure
build plan

6. Build &
test code

%

7b. Review
test results

3. Clone
repository
4. Solve
exercise
| [5. Commit &
push solution

no

Figure 1.1: Activity diagram of the automated assessment process of Artemis
[KS18]. Students have to perform various VCS operations (3, 5) and
interactions with the IDE (4) and the Artemis client (2.1, 7b) in
order to download, solve and submit an exercise.

Course instructors are affected by the same restrictions as they also have
to modify source code and test it by submitting it to the Artemis servers.
The administration of programming exercises requires the interaction with
multiple repositories, because every exercise includes three base participa-

tions:

1. The template participation references the template repository, which
contains the code every student receives when starting a new exercise.

tains the sample solution achieving a full score.

receives a score and gets graded.

. The solution participation references the solution repository, which con-

. The test repository contains all tests, based on which a participation

CHAPTER 1. INTRODUCTION

Version Control System

Clone Repository

Artemis

Start Exercise Commit Changes

Student
Student Review Test Results Push Solution
IDE
Run Code
<<ir1c|udés>>
Solve Exercise
<£iﬁclude§>>
Student ™ Debug Code

Figure 1.2: Use case diagrams of a student solving a programming exercise. The
whole process is split up into three separate diagrams as it requires
interacting with multiple clients and systems.

Instructors build and test these base participations locally before upload-
ing the exercise to Artemis. This involves manual copy operations, that
combine the tests with any of the base repositories. This is a time consum-
ing and error-prone process, as any mistake can result in local build failures.
Using standard IDE build tools is not an option, because these are processes
unique to Artemis.

1.2 Motivation

Users of the system do not have a way of interacting with Artemis directly
while still using their preferred IDE. With the presented approach, we aim
to unify the process of solving and editing programming exercises and inter-

1.3. OBJECTIVES

acting with the system. The main benefit therein lies in improving the user
experience for both students and instructors:

Eliminate media disruptions Participants don’t have to switch between
a browser running the Artemis client and their IDE. The fragmented work-
flow is especially problematic for inexperienced students, who have to get
familiar with multiple applications and user interfaces (Uls): VCS, Artemis
and the IDE. This can have an adverse effect on the learning process since
students might be overwhelmed with the amount of new input and solving
the actual programming exercise becomes unnecessarily complex.

Exercise administration in one IDE project Instructors who admin-
ister exercises, deal with an even more fragmented workflow since every pro-
gramming exercise relates to at least three base repositories. Editing these
repositories simultaneously could be improved by migrating this process into
an IDE and allowing instructors to modify, build and test an exercise using
a single IDE project.

Summarized, the integration of Artemis itself into an IDE could simplify
interactions with the system and lower the entry barrier for inexperienced
users of the platform. The IDE should be incorporated into Artemis’ system
architecture and connected to all relevant subsystems.

1.3 Objectives

Based on the previous sections, we can derive the following three main ob-
jectives for this thesis:

Unify Artemis with a modern IDE Artemis is currently not integrated
into an IDE at all. Users should be able to interact with the system from
within the IDE without any media disruptions. We want to connect Artemis
to the IDE and allow both systems to communicate with each other. A new
IDE plugin should provide a bidirectional connection and enable an interac-
tive and responsive learning experience.

Simplify VCS interactions Addressing the necessity to learn a complex
VCS like Git by hiding complex VCS operations behind simplified actions
lowers the entry barrier. Users should be able to interact with the platform
without having to execute an overwhelming number of VCS commands. In-
stead, a simplified user interface would introduce them to the VCS and en-
hance the overall programming exercise workflow without requiring any prior
knowledge.

CHAPTER 1. INTRODUCTION

Enhance build and test capabilities We want to build upon the work
of previous authors [Beh19, MK17] on the code-editor regarding its display of
test results by porting this functionality into an IDE. The plugin should be
able to provide the same level of detail when reporting build results to the
user, which enables a more responsive workflow and allows quicker reactions
to negative feedback. Above that, introduce the possibility to run builds lo-
cally. As a result, instructors should be able to edit and debug programming
exercises using a workflow, which requires fewer manual interactions and is
less susceptible to errors.

1.4 Outline

Chapter 2 introduces technical background information relevant tot his the-
sis. Chapter 8 analyzes functional and nonfunctional requirements and based
on these, provides visualizations of the proposed system from different per-
spectives. Chapter 4 decomposes the system into smaller units mapping the
from the requirements derived designs onto subsystems. Chapter 5 refines
solution specific objects and introduces interfaces and operations used to im-
plement the concrete system. Chapter 6 concludes this thesis by reflecting
on open and completed goals and gives an outlook on future work.

Chapter 2

Background

In this chapter, we elaborate on the technical details, which are relevant to
the in this thesis presented designs and implementations. We first explain
the basic concept of an integrated development environment (IDE) and how
IntelliJ allows plugins to extend its offered functionalities. We then introduce
continuous integration and version control systems, which are essential for
programming exercises in Artemis.

2.1 Integrated Development Environments

Integrated Development Environments stand in contrast to regular text ed-
itors, which are limited in their capabilities and mostly only offer syntax
highlighting as an additional feature, if any. While there is no binding defi-
nition, IDEs can be described as programs, which offer an extended toolkit
for editing and executing source code during software development. In ad-
dition to the features of a regular editor, an IDE commonly bundles tools
related to the compilation, debugging, testing and building of complex soft-
ware projects. However, this list of tools is neither exhaustive, nor required
for every IDE. As every programming language requires a special set of com-
plementary software in order to work with it in a productive manner, IDEs
can be just as flexible in their integrated features, depending on which lan-
guages they support.

IntelliJ is an IDE developed by JetBrains'. The core application (titled
Community Edition) is released under the Apache 2.0 license? and its code
open sourced [O’M02] and available on GitHub?. IntelliJ heavily relies on

https://www.jetbrains.com/idea/
’https://www.apache.org/licenses/LICENSE-2.0
3https://github.com/JetBrains/intellij-community

https://www.jetbrains.com/idea/
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/JetBrains/intellij-community

CHAPTER 2. BACKGROUND

Figure 2.1: Screenshot of an opened software project in IntelliJ. Highlighted are
components of different plugins: The Gradle plugin on the right side,
the Java Spring plugin and the Typescript plugin on the lower side.
The overall color theme got changed using the Darcula theme plugin®

the usage of plugins developed by either JetBrains, or any interested external
developer. Together with the core application, these plugins can be installed
in order to customize the installed IDE (e.g. by adding visual improvements
like a different color theme), or extend it to add completely new functionali-
ties. As an example, users can add support for a new programming language
by installing the Python plugin?. One is also able to connect third-party plat-
forms such as Artemis to the IDE by developing a dedicated plugin. This
thesis follows the same approach by implementing a new IntelliJ plugin called
Orion. Figure 2.1 shows a screenshot of an opened project in IntelliJ. The
highlighted components are not part of the vanilla (unmodified) installation
and got added by installing the specified plugins.

2.2 Dependencies of Programming Exercises
Programming exercises in Artemis depend on external systems, so that the

history of code changes by users can be tracked and persisted. Furthermore,
the test feedback process also requires continuously building changed code

‘https://github.com/JetBrains/intellij-community/tree/master/python
Shttps://github.com/vecheslav/darcula-darker

10

https://github.com/JetBrains/intellij-community/tree/master/python
https://github.com/vecheslav/darcula-darker

2.2. DEPENDENCIES OF PROGRAMMING EXERCISES

and forwarding the results to the platform. Therefore, this sections covers
the basics of version control (VC) and continuous integration (CI).

Version Control System The Source Code Control System (SCCS) from
1975 [Roc75] was the first major Version Control System (VCS). The core
idea was the same as today in a modern VCS, which is to store the original
file and all deltas (i.e. changes made to the file) which applied sequentially
lead up to the most recent version of the file. Meanwhile, repositories can
be defined as the grouping of multiple files, often related to one single soft-
ware project. Artemis uses the distributed VCS (DVCS) GitS, which has
the advantage of being decentralized, meaning that every client holds the
complete history of all files in a repository and does not have to rely on a
central remote. As a result, every user can work on his personal repository,
even offline and synchronize it at a later point in time with Artemis and any
connected other remote. A simplified visualization of a DVCS can be found
in figure 2.2.

Continuous Integration Continuous Integration describes the process of
deploying the current version of a software project, often to a productive
or test server, several times a day [Boo90, FF06]. In order to facilitate this
continuous flow, the CI system (CIS) observers a VCS and reacts to every
change by merging the update into the local repository on the CIS and then
starts a new deploy. This is often accompanied by automated tests, which
ensure that the changes wouldn’t break any relevant components. Artemis
uses a CIS in conjunction with participations in programming exercises. For
every submission to a participation, the CIS runs tests on the submitted code
and reports the test results to Artemis (see figure 2.3).

Shttps://git-scm.com/

11

https://git-scm.com/

CHAPTER 2. BACKGROUND

Server Computer

Version Database

Version 3

Version 2

Version 1

Computer A

T

Version Database

Version 3

Version 2

Version 1

Computer B

File

T

Version Database

Version 3

Version 2

Version 1

Figure 2.2: Distributed version control [CS14]. Every computer holds a copy of
the version database. Repositories can be synced between computers.

(1) (2] l"i

Commit Check for changes ", N 9
N ‘ Compile,
test
Developer Version Continuous | run tests
Control Integration
Server Server
° Motify developer |

Figure 2.3: Typical CI + VCS setup in Artemis [KS18]. Users commit their
changes with a new submission (1), which the observing CI server
fetches (2) and builds (3). The test results get then forwarded to the
user, so he can adapt his code, or finish his participation (4).

12

Chapter 3

Related Work

There already exists a multitude of mostly web-based code editors and pro-
gramming exercise feedback and teaching tools. With regards to Artemis,
the web client offers its own online code editor including interactive test re-
sult feedback and syntax highlighting [MK17, Beh19]. On the other side,
plugins for IDEs that bridge the gap between an e-learning platform and a
sophisticated development environment are just starting to emerge. In this
chapter, we analyze two IDE plugins, that aim to integrate the submission
and feedback processes of MOOCS into IDEs such as IntelliJ and NetBeans'.
We further compare Orion to an online code editor, draw parallels to Artemis
and elaborate on the fundamental differences to Orion.

3.1 Test My Code

Test My Code (TMC) is a suite of tools developed at the University of
Helsinki [VVLP13]. The plugin? integrates into the ecosystem of the bigger
TMC platform, which includes a server application® and user-mode linux
images for building and testing the submissions? (see figure 3.2). Similar
to Artemis, the platform allows instructors to create and update program-
ming exercises, while providing students with immediate feedback for every
submission. Additionally, students can request code reviews, which will get
answered by instructors (see figure 3.1) and displayed in the IDE, if the
plugin is installed. The plugin is available for NetBeans and IntelliJ on an
open-source basis. One distinctive feature is the ability of TMC to gather

https://netbeans.org/
’https://github.com/testmycode/tmc-netbeans
3https://github.com/testmycode/tmc-server
‘https://github.com/testmycode/tmc-sandbox

13

https://netbeans.org/
https://github.com/testmycode/tmc-netbeans
https://github.com/testmycode/tmc-server
https://github.com/testmycode/tmc-sandbox

CHAPTER 3. RELATED WORK

user data, e.g. by tracking keystrokes of students®.

In comparison to TMC, Artemis splits every programming exercise up
into three repositories (template, test, solution), while TMC follows the ap-
proach of having one codebase including the solution to the exercise: Code,
that the student should not receive is marked with specific comments and
gets removed by the TMC server before sending it to the student’s ma-
chine [PLVV13]. Including all tests in the student’s repository also intro-
duce the disadvantage that a participant can reverse engineer the solution
by analysing the tests and matching the expected results. Orion explicitly
runs all tests for students on the remote CIS and only displays the results
without revealing information about the implementation of the actual test.
Furthermore, Orion also offers a simplified Ul for automated download, sub-
mit and build workflows, which TMC does not support without performing
manual steps. Finally, Orion integrates the Artemis client into the IDE in
contrast to the separate web application of TMC.

serialize: function() {
return {
start: $("#start").vall(),
end: $("#end").val(),
freshness: $("#freshness").val()
b
]I

var entr

if (1ent |Nice use of backbone! I suggest checking the
aler |lecture material on e.g. form serialization;
retu |although your approach works, it binds the UI
and JS code together.|

1)

sleepy.view.Stat
el: $("#main MNotification
initialize: o Notify by e-mail « Notify in IDE
this.ren
1, »

render: func | @ Saye review
var over ¢ Aé

Thi 8 L i T T T T T Yy eeeeee——

overallFreshness += parselnt(item.get ("freshness"));

Figure 3.1: Code review of a submission in TMC [VVLP13]

14

3.2. JETBRAINS EDU TOOLS

NetBeans plugin Web browser
\\ " CLIENT
— SERVER
Web
server(s)
- , ‘ Google
""" CoTTTT Drive
Database : '

2E®-—

Git repositories

I

Sandbox server(s)

Figure 3.2: Architecture of TMC [VVLP13]. The separation of the plugin and
the web application result in a media disruption. Web servers repre-
sent the central communication nodes for all system components.

3.2 JetBrains Edu Tools

JetBrains offers the inhouse developed Edu Tools plugin™® for creating com-
plete courses with programming exercise and sharing them privately or pub-
licly with other students or instructors. The plugin is only available for
IntelliJ. Compared to TMC, or Artemis, the focus of managing and sharing
Edu Tools courses lies within the IDE itself rather than having a secondary
management platform, such as a dedicated web application. However, it is
possible to upload and integrate courses into online learning systems such as
Stepik?, which is natively supported by the plugin. A similarity to Orion is
the additional tool window (see figure 3.3), which displays styled instructions
for the opened task. The Edu Tools also display test results immediately since
the tests themselves run locally in the environment of the IDE. Solutions can
also be made visible to the student depending on the configuration.

Shttps://testmycode.github.io/
"https://github.com/JetBrains/educational-plugin
8https://plugins.jetbrains.com/plugin/10081-edutools/
https://stepik.org/catalog?language=en

15

https://testmycode.github.io/
https://github.com/JetBrains/educational-plugin
https://plugins.jetbrains.com/plugin/10081-edutools/
https://stepik.org/catalog?language=en

CHAPTER 3. RELATED WORK

¢’ Task.java Wrong solution ription & —
class HelloJava { < e ¢
public static void main(String[] args) { v S
System.out.println(sayHello());
’ Class Methods
@ public static String sayHello() { return "Hello, World!"j|
H Take a look at defining method

syntax and make the method
sayHello return the string
"Hello, Java!"

Test Results o —

You should say hello to Java
Expected:

<Hello, [Javal!>

Actual:

<Hello, [World]!>

Figure 3.3: Feedback for a failed submission using the Edu Tools plugin®. Tests
are run locally and results are immediately availabe to the student.
The plugin also offers styled instructions for every task, which get
displayed inside the IDE in a separate tool window.

In contrast to Orion we can summarize the following differences: Test
implementations are available to the student and interactions with connected
e-learning platforms from within the IDE are limited compared to using a
web client. Just as it is the case with TMC, multiple repositories, or a VCS
in general are not supported, which Artemis uses to offer more modular and
customizable exercises. Both plugins diverge when it comes to evaluating
the performance of a student: Contrary to the Edu Tools plugin, Orion is
aimed at courses which rely on students not knowing about test and solution
implementations for their grading process.

3.3 Coding Tools of the openHPI Platform

Web-based code editors provide basic code editing functionalities in browsers.
openHPI’s CodeOcean platform is a standalone application, which can be
connected to external e-learning systems [SKT116]. It is part of the on pro-
gramming exercises focused interactive coding tools developed at the Hasso-
Plattner-Institut. In addition to the online editor, the stack includes the
video conferencing program CodePilot and the exercise sharing portal Code-
Harbor [STM17b], which instructors can use to both share and import cre-
ated tasks [STM17a]. Because programming exercises take a long time to
create, the goal of CodeHarbor is to distribute the workload so that useful

16

3.3. CODING TOOLS OF THE OPENHPI PLATFORM

exercises can be reused in different courses. Artemis also allows imports,
although this is limited to users who are also registered as instructors in the
original course.

Furthermore, users of the openHPI stack can request direct help from
tutors via the videoconferencing functionality of CodePilot [TWS17]. Alter-
natively, tasks can also be solved together with other students using pair
programming as users can see and talk to each other while using the online
editor.

CodeOcean can be combined with the aforementioned tools and connected
to MOOCs and other e-learning platforms. The CodeOcean editor can com-
municate with external systems via the learning tools interoperability inter-
face (LTI)!%, the same interface Artemis also uses for its external connec-
tions. CodeOcean combines a Ruby on Rails based web application with
the OS-level virtualization technology Docker (see figure 3.5). In contrast
to Artemis, the hereby used workflow does not involve a combination of CI
and VCS, but rather code execution and testing using Docker containers!!.
Users can solve simple tasks using such an editor, but are limited as soon as
more complex implementations are queried. The involvement of an IDE as
enabled by Orion is not possible at all since there is no VCS, which would
allow students to download a repository. Consequently, debugging and code
completion are also not supported. Figure 3.4 shows the CodeOcean editor
in a browser. The edited source code can be either run or tested, which
provides the user with the output of his submission, or a score based on the
results.

Onttp://www.imsglobal.org/activity/learning-tools-interoperability
"https://www.docker.com/

17

http://www.imsglobal.org/activity/learning-tools-interoperability
https://www.docker.com/

CHAPTER 3. RELATED WORK

<[> CodeOcean wglish ~ Help & Herbert Spam ~

v Java Einstieg Woche1 Kapitel1 Aufgabe1 %)

In dieser Aufgabe soll wiederholt werden, wie man eine Ausgabe auf dem Bildschirm erzeugen kann. Schreibe ein Programm, dass in einer Zeile “Willkommen bei openHPI!" ausgibt und in eine neue Zeile
springt.

(Hide)

& Collapse Action Sidebar P Run P Score # Request comments & Collapse Output Sidebar
1
public args

Cuintiomen vt e RESUIES

2 test files have been executed.

Test File 1 (HalloWeltTest1 java)

503 Files
— B HalloWelt.java

EYCYSIN

Passed Tests 1outof 1
Score 250utof2.5
Feedback Well done. All tests have been passed.
Error -
Messages
Passed Tests 1outof2
Score 1.25outof 2.5
Feedback Die Ausgabe weicht von “Willkommen bei openHPI!"
ab. Uberprife den Inhalt von System.out.printin() auf

Figure 3.4: CodeOcean online editor'?. The user partially solved the task and
received a grade of 75%. Changes to the code can be either run,
which just displays the output, or tested resulting in a score.

Client Side [[
Bootstrap, jQuery, Turbolinks

Container Container
Synchronous Asynchronous Server-sent
Communication Communication Events

v l

Server Side
Ruby on Rails HTTP

| Remote API—>]

Models | I Views I I Controllers

ORM
Active Record

Database Layer g

PostgreSQL

Web Application Docker

Figure 3.5: High level architecture of CodeOcean [SKT'16]. A Ruby on Rails
web application is combined with Docker to build an interactive on-
line code editor. Code runs in containers and results get displayed
in the web client.

18

Chapter 4

Requirements Analysis

This chapter focuses on the requirements and scenarios that form the basis
of this thesis. The following sections adhere to the standards specified by
Briigge and Dutoi [BD09], specifically the Requirements Analysis Document
Template. The first section gives an overview over the current and proposed
system, followed by a list of functional and nonfunctional requirements. Sec-
tion 4.3 finally visualizes all changes and new components on an application
domain level.

4.1 Current System

In order to facilitate programming exercises, Artemis has multiple external
dependencies, that provide the required functionalities for storing, building
and testing source code. The current system in figure 4.1 illustrates these
components, which consist of the Version Control and the Continuous In-
tegration systems. Both are connected to the Artemis Server, which imple-
ments an interface to the Artemis Client. The client is needed to start an
exercise and analyze any feedback for a submission. Code submissions in
the form of a push to the VCS trigger a build on the CIS. The CIS reports
all results to the Artemis Server, which links them to the submission and
forwards the feedback to the client.

As a consequence, this setup induces media disruptions, because users
have to switch between the IDE, Artemis and often an additional VCS GUI:
The association between the IDE and the VCS cannot be seen as given since
it depends on the concrete IDE implementation and is only optional. There
is no way to circumvent switches between different clients in the current
system, if the user prefers an IDE over the in the Artemis Client integrated
code editor, because he wants to work with a more sophisticated toolset.

19

CHAPTER 4. REQUIREMENTS ANALYSIS

IDE E

Artemis Client E VCS Client E

—O—

Artemis % VCS

API Operations
VCs
Service
Artemis Server E @ Version Control E
Cl
Service

—O)——

Continuous
Integration E

Figure 4.1: Current programming exercise system of Artemis, depicted as a high-
level component diagram, adapted from [Beh19]. Artemis VCS client
components are not directly connected and have to communicate
via the Artemis server. The by Artemis provided components are
colored in blue.

4.2 Proposed System

The proposed solution connects the Artemis Client with the development
environment using a plugin, Orion, which can be installed in the IDE. Orion
provides new interfaces, that form a bidirectional relation between Artemis
and the IDE. External interactions with programming exercises can then be
performed without any media disruptions.

From a high-level perspective, there exist two in Orion integrated con-
nectors, which link all components (see figure 4.2): The Artemis Connec-
tor handles interactions with the existing client, while the VCS Connector
contains an adapter to all necessary interfaces of a version control system.
An alternative to the Artemis Connector would be to create a dedicated
Artemis IDE Client. This would result in duplicated implementations of the
same functionalities, because we want to offer the same feature range as the

20

4.2. PROPOSED SYSTEM

IDE E
Orion E

Artemis Connector E VCS Connector E

o o 5 &

Artemis Client $:| VCS Client E

X\ Artemis /L VCS

F ;
Q API Operations

VCS
Service
Artemis Server E @ Version Control {I
fL Cl
Service

Continuous E

Integration

Figure 4.2: Component diagram of the proposed system of Artemis including the
new Orion IDE plugin. Media disruptions are eliminated by connect-
ing the Artemis client with the IDE and VCS. The by Artemis pro-
vided components are colored in blue, new components are colored

1m greern.

already existing client does. Deciding to use connectors has the additional
advantage of a more lightweight implementation, which is easier to maintain
and less likely to introduce errors that have already been discovered and
solved in the regular client.

4.2.1 Functional Requirements

The following sections describes the functional requirements of Orion. We list
what concrete expectations a user might have with regards to his interactions

21

CHAPTER 4. REQUIREMENTS ANALYSIS

with the system. In order to provide a more comprehensive list, we group
the requirements into three sections related to

The VCS Functionality
The Build and Test Functionality

The Artemis IDE Project Functionality

VCS Functionality

FR1.1

FR1.2

FR1.3

FR14

FR1.5

FR1.6

Download participation: Students should be able to download the
repository that is related to their participation.

Download base repositories: Instructors should be able to download
the test, template and solution repositories of an exercise.

Download student’s submissions: Teaching assistants should be
able to download the repository related to a student’s submission.

Edit exercise in one project: Instructors can modify the test, tem-
plate and solution repositories of an exercise in one single project.

Resolve conflicts: If there are any merge conflicts while updating a
repository, users should have to opportunity to let Orion resolve them
automatically.

Submit changes: Users should be able to save all current changes to
a repository and upload them to the remote Artemis VCS.

Build and Test Functionality

FR2.1

FR2.2

FR2.3

FR24

Test base participations locally: Instructors should be allowed to
execute tests for the solution and template participation locally.

Build participations remotely: Users should be able to trigger the
build for any imported participation from within the IDE.

Analyze test results: For any task of an exercise, the last reported
result should be displayed next to it, so that users can analyze potential
errors of their submission.

Display build results faster: Instructors should be able to see pre-
liminary test results while waiting for the remote build to finish execu-
tion.

22

4.2. PROPOSED SYSTEM

Artemis IDE Project Functionality

FR3.1 Generate Artemis IDE project for exercise: Instructors should
be able to generate an Artemis IDE project for any of their exercises.

FR3.2 Generate Artemis IDE project for participations: Students should
be able to generate an Artemis IDE project for any of their exercise
participations.

FR3.3 Customize storage location: Users should be able to freely choose
the storage location for generated Artemis IDE projects

FR3.4 Move Artemis projects: Users should be able to move an already
downloaded Artemis IDE project to a different location.

4.2.2 Nonfunctional Requirements

The next list follows the FURPS+ model [BD09] and provides an overview
over all nonfunctional requirements. We omit the functional category as it
has already been covered in the previous section.

NFRU.1 Usability: The amount of clicks, that are necessary to download a
repository should be lowered from the current maximum of 5 to 2.

NFRU.2 Usability: The amount of clicks, that are necessary to submit changes
to the remote repository should be lowered from the current maximum
of 7 to 2.

NFRU.3 Usability: The by Orion added UI elements should be consistent with
the existing style and user experience of the IDE.

NFRU.4 Usability: The system should offer all already existing interactions
related to programming exercises in the IDE.

NFRU.5 Usability: Users should not need more than 30 seconds to find the Ul
elements used for starting the import and submit processes.

NFRP.1 Performance: Orion should not block interactions with the IDE, that
are not directly related to programming exercises.

NFRP.2 Performance: If an action, that is already available in the current
Artemus client, is performed from within the IDE using Orion, the
total number of requests sent to the Artemis server should not be higher
compared to the current Artemis client approach.

23

CHAPTER 4. REQUIREMENTS ANALYSIS

NFRP.3 Performance: The delay between incoming test results and their dis-
play in the IDE should be lower than % second.

NFRS.1 Supportability: Orion should be written in a Java interoperable pro-
gramming language as to not introduce new language fragmentations
for future maintenance tasks regarding the Artemis platform.

NFRS.2 Supportability: A developer, who added a new feature to the Artemis
client (except the online code editor), should be able to integrate the
same feature into Orion within one business day.

NFRS.3 Supportability: The plugin should support English and German lo-
calization.

NFRS.4 Supportability: Orion should support Windows 10, macOS 10.15
Catalina and any Linux distribution with the KDE, Gnome or Unity
desktop environment.

4.3 System Models

The next sections visualize different perspectives on the system. Use case
diagrams give an insight into the the relationship between actors and the im-
plemented system, followed by an abstracted view in the form of an analysis
object model.

4.3.1 Scenarios

The next two subsections describe exemplary scenarios related to the previ-
ously defined requirements. They offer additional insight as to how Orion
is used for the programming exercise creation and participation. The first
scenario focuses on the role of a student, who imports a new exercise into the
IDE. The second outlines the administrative view of an instructor, which is
centered around editing an exercise by updating and testing the source code
for all three base repositories.

Scenario 1: Working on an Exercise and Solving it

This scenario describes how Orion can be used for importing the repository
of a participation into the IDE, solving all tasks and submitting the solution.
The actor is Denis, a student participating in a programming course at the
university. The entry condition requires that there already exists a released
programming exercise, which is accessible to all students in the related course.

24

4.3. SYSTEM MODELS

Denis takes part in this course, therefore he is eligible to participate in the
exercise.

Denis opens his IDE and the by Orion integrated window containing an
all available interactions with Artemis. As the currently opened project is
a previously imported exercise from Artemis, Orion displays the details of
the related exercise showing Denis his score, the exercise instructions and
the test results for his last submission. Because he wants to start the newly
released exercise for the course, he navigates to the course overview and
finally to the latest programming exercise. Denis starts his participation
with the click on a button, which then causes a loading animation signaling
him that his participation is being prepared. Afterwards, a new interaction
becomes visible allowing Denis to import his personal repository into an
Artemis project inside the IDE. After using the import option, Orion signals
to Denis that all relevant files are being downloaded. Orion generates an
IDE project at the end of this process, which Denis opens to interact with
the exercise.

Denis can now read through the instructions and starts implementing his
solution. He has to write a program based on two sorting algorithms, Bubble
and Merge Sort. There is one task Denis has to solve, which in turn contains
multiple subtasks:

1. Task: Implement both sorting algorithms

(a) Subtask: Implement the Merge Sort algorithm
(b) Subtask: Implement the Bubble Sort algorithm

Denis implements both sorting algorithms and debugs his program locally
using the in the IDE integrated tools. He then wants to verify and save
his progress, so he uses the submit functionality offered by Orion. He gets a
confirmation that all his changes have been saved and uploaded to the server,
followed by an automatically opened window informing him that his code is
currently being tested. After the test run, the results show that there are
still errors in the Bubble Sort code, so Denis analyzes the provided feedback
and tries to fix the problems. After submitting a second time, the results
show no error, so the exercise has been successfully completed.

Scenario 2: Editing an exercise

This scenario describes how an instructor can use Orion to edit all reposito-
ries of an exercise simultaneously using one opened instance of his IDE. The
actor is Jane, an instructor for the course ”Basics of Programming”. For a

25

CHAPTER 4. REQUIREMENTS ANALYSIS

valid entry condition, there has to already be a created exercise, so that any
instructor can edit the template, solution and test repositories.

Jane opens her IDE and the Artemis Project tool window inside it, in
which Orion displays an overview over all courses. Jane navigates to the
course administration and selects a newly created programming exercise,
which needs to be prepared for her students. She clicks on the edit button,
which prompts her to select a storage location for the new Artemis Project.
After confirming the import, a pop-up informs her that all three base repos-
itories are being downloaded. After the creation of the new project is done,
Jane opens the imported exercise and has the option of editing files in one of
three submodules, one for each base repository: The test, the solution, or the
template repository. She selects the test repository and implements all tests
for the tasks in the exercise instructions. After a click on the submit button,
Orion informs her, that all changes have been successfully uploaded to the
server. Jane shifts her focus to the solution submodule and implements the
reference solution for all future submissions. She verifies her implementation
by clicking on the local test button, which builds and runs the code on her
local machine. The result window informs Jane, that there were no errors
during execution, so she decides to submit the code to the remote reposi-
tory. After an upload confirmation message, the test result window displays
an animation, showing that the submitted code is being built on the server.
Preliminary results allow Jane to already check whether her submission con-
tains any serious errors. After waiting for a couple of seconds, the visualized
remote build failed, which apparently was caused by a wrong build file con-
figuration. After she fixes the error, both builds (local and remote) complete
without any problems and the exercise is set up for the release date.

4.3.2 Use Case Model

After establishing the requirements, we will now detail use case models of
Orion. The use cases can be split up into two models related to importing
and working on an exercise. The actors in these cases include:

Student Participates in courses and exercises. In the displayed diagrams,
students participate in programming exercises.

Instructors Creates and edits exercises. Has full access to all materials and
exercises related to the course in which this role was assigned.

Start or resume programming exercise Repositories of programming
exercise participations can be imported into the IDE creating a new Artemis

26

4.3. SYSTEM MODELS

IDE project. Figure 4.3 illustrates how a student interacts with Orion by
either starting or resuming a previously imported exercise. If a new exer-
cise is started, the participation can be imported into the IDE. This entails
the generation of a new Artemis IDE Project, which holds the downloaded
repository. Because Orion simplifies all VCS specific operations, the student
only has to open the project and can commence his work.

Orion
. Generate Artemis
Start Exercise IDE Project
<<incllude>> <<inc|lude>>

Start Programming
Exercise

Import Participation
into IDE

- -<<include>>---

h
<<include>>
h

Open Artemis

Student IDE Project

<<include>>

Resume Programming
Exercise

<<include>>

Update Artemis
IDE Project

Figure 4.3: Use case diagram of starting/resuming a programming exercise par-
ticipation in Orion. The student imports the participation by gen-
erating an IDE project and opening it.

Analogously in order to resume an exercise, an update is necessary which
synchronizes the IDE project with the remote repository. Again, opening
an existing project suffices in order to be connected to Artemis and modify
the imported source code. On a second note, instructors can also import
exercises, albeit this involves the download of multiple repositories. Because

27

CHAPTER 4. REQUIREMENTS ANALYSIS

the scenario in this case is almost identical to the use cases depicted in figure
4.3, we omit the model for this variant.

Submit changes to a programming exercise Both an instructor, or a
student can submit their local changes to the student participation, or the
whole exercise respectively. A student is limited to his own participation
repository, while an instructor is allowed to work on the before mentioned
base repositories of an exercise (see figure 4.4). We therefore introduce a com-
mon submit use case, which can be specialized in the form of a participation
submit and an exercise submit.

The general submission process was already available in the online code ed-
itor. The plugin now ports this functionality into the IDE and handles any
complex VCS operation related to saving the changes or uploading them to
the remote repository. The user has to update the repository and save his
changes, so that Orion can perform the submit using the most recent version
of the user’s source code.

Orion

Submit Changed Save Changes
Participation
<<|nclude>>
Student Submit Changes
<<|nclude>>
Update Repository
<<include>> <£ihc|ud_e>> .‘;<include>>_

% Submit Changed
Submit Changes to . Submit Changes to
Template Submit Changes to Tests

Exercise
Instructor
Figure 4.4: Use case diagram of the submission of changes to an exercise or
participation. Instructors can edit an exercise by submitting changes
to all three base repositories. Students only need to submit one.

28

4.3. SYSTEM MODELS

4.3.3 Analysis Object Model

The following section explains how the updated use cases and analyzed re-
quirements lead to the next iteration of the analysis object model. Addition-
ally, we introduce new classes based on the architecture of Orion and show
how a connection to the existing Artemis components is realised. Figure 4.5
provides a visual representation of the described model.

_‘ ___ l ProgrammingExercise ArtemisIDEProjectFacade
articiy 1
l title
—{ SolutionParticipation }— editinIDE() submitArtemisIDEProject()
generateArtemis|DEProject()
StudentParticipation 3
0.* | TestRepository |
importIntolDE()
Repository
AssignmentRepository }—|> repositoryUrl
files
ﬁg:;fsd() N <>| AremisiDEProject
upload()
ProgrammingParticipation update()
—l> initializationState
startParticipation()
resumeParticipation()
1. PluginBuildPlanProxy IDEProject
ProgrammingResult BuildPlan settings
0.* N X savedLocationPath
score - buildConfiguration
isBuilding delete()
processBuildResult() 0 RemoteBuildPlan create()
run
createBuildResult() buildPlanUrl 0.~

forwardResults ToIDE()

IDE

settings

register(project)
deregister(project)

Figure 4.5: Class diagram of the analysis object model of Orion, adapted from
[Beh19]. The new facade connects the IDE with the existing pro-
gramming exercise components of Artemis and simplifies complex
operations. Updated classes are colored in blue, new classes in green.

IDE The IDE represents the core component in which the developed plugin
is embedded. An IDE can define different settings, which influence all con-
taining entities. IDEs can register projects, so that the user may open and

29

CHAPTER 4. REQUIREMENTS ANALYSIS

work on them. While this is fully optional, an IDEProject does not neces-
sarily have to be associated to a specific IDE instance, they are independent.
Projects can be deregistered and moved to different environments, in which
an IDE can register them again.

IDEProject As just described, projects can be seen as self containing
units, identitified amongst other attributes by the saved location. Users can
work on the source code of an exercise, or participation via ArtemisIDE
Projects, as they wrap Repositories with the purpose of providing a sin-
gle point of interaction. Because editing an exercise involves working with
three base Participations, we allow projects to reference more than one
Repository. There is no explicit upper limit, so that future updates of pro-
gramming exercises which might require additional Repositories, are taken
into consideration.

ArtemisIDEProjectFacade VCS operations mostly relate to the down-
load and submission of changes to a Repositoriy. As we want to simplify
these operations and allow them to be performed from within the IDE, i.e. via
an ArtemisIDEProject, there has to be a connection between existing exer-
cise components and the new Artemis project type. A facacde [GHJV95] ful-
fills both requirements. It serves as a link between the ProgrammingExercise
and the IDE. Moreover, it provides an interface, which allows users to gen-
erate new projects and submit the locally downloaded Repositories while
decreasing the number of necessary steps by bundling complex details under
one method.

Build Plans For the ArtemisPlugin to be able to perform builds and dis-
play test results, the introduction of a PluginBuildPlanProxy is necessary.
This proxy [GHJV95] offers the same interface as a regular BuildPlan, but
produces a stand-in result while the underlying remote plan finishes execu-
tion. A simultaneously running local build provides the stand-in, so that
Orion can display feedback quicker than the current implementation. Mean-
while, an update with the actual remote result as soon as it arrives ensures
that this feedback is consistent with the one shown in the regular Artemis
Client. Students are currently not able to perform builds locally since a
StudentParticipation does not have access to the test repository. Hence,
only instructors could benefit from the improved performance for now. Until
a future update introduces hidden local tests to students, the proxy can just
be used as a passthrough in these cases and switch to incorporating a local
student’s build as soon as the feature is released.

ProgrammingExercise and StudentParticipations For users to be able
to download the in an ArtemisIDEProject contained repositories, the

30

4.3. SYSTEM MODELS

ProgrammingExercise and StudentParticipation classes have to provide
the necessary import operations. Based on the different use cases of instruc-
tors and students, there exist two different options:

1. Because an exercise including all base repositories can get edited by an
instructor, the ProgrammingExercise itself has to offer an editiInIDE
functionality.

2. In the latter case of just solving the exercise while working on a
StudentParticipation, there only needs to be a reference to the
AssignmentRepository and the related BuildPlan. Consequently, us-
ing the tmportIntoIDE operation on the participation suffices.

4.3.4 Dynamic Model

We conclude this chapter with a visualization of the process of editing an ex-
ercise as an instructor. While students only have to work with one repository
at a time, the general workflow stays the same when working on a participa-
tion with the exception of the local build process. Incidentally, the presented
diagram focuses on one single repository out of all three base repositories for
the same reason. The related model is depicted in figure 4.6

Edit and Submit Changes to an Exercise

The edit of an exercise in an IDE initiates the download of all relevant repos-
itories related to the exercise template, solution and tests. In the meantime,
the newly generated Artemis IDE Project contains additional information
about the settings of the project itself (e.g. related to the programming lan-
guage) and the imported exercise. This project can be opened in order to
edit the containing repositories. The instructor can verify that his changes
did not break the actual exercise and produce the expected result by running
a local build as a first step. This is faster than a direct run of the remote
plan since the submission and build result forwarding steps can be omitted.
If this local result already produces errors, adaptions have to be made and
the instructor edits the repository again.

If there is no reason to stay in this refinement process based on the local
build results, then all changes can be submitted and persisted in the remote
repository. Such a submit results in two parallel activities:

e While the remote build is running, Orion uses the Build Plan Proxy
in order to display an intermediary local result until it receives the
actual test results from the remote plan. These results can contain

31

CHAPTER 4. REQUIREMENTS ANALYSIS

T
Generate Artemis
IDE Project

N——
Edit Exercise Artemis IDE Project
S

Download
Repositories

yes

Y
Errors in Run Local . .
Local Result? Build Plan Edit Repository |

A

Submit Changes

Run Local Run Remote
Build Plan Build Plan

Y Y

[Display Result Proxy] [;Z;‘ﬁﬁgf%g]

Errors in
Remote Result?

®

Figure 4.6: Activity diagram of an instructor editing a programming exercise.
Over two edit and test loops, the user modifies the exercise reposito-
ries until the local and remote builds produce positive results. New
activities are colored in green.

32

4.3. SYSTEM MODELS

new errors, which necessitate another edit of the repository. This can
happen, because the plan on the CIS does not have to be identical to
the one used by the local plugin. Both can run the submitted code, but
the environments in which these builds are executed might be different
and have an influence on the final result.

e The run of the remote build is an already existing process in the current
system. It produces all test results, that are relevant for grading the
participants. However, in the case of interacting with a programming
exercise using Orion, these results are forwarded to the IDE, so that
the user can immediately react to any negative feedback.

The final test analysis can be performed after all results got reported to
Orion. Based on these tests, the instructor can decide whether to conclude
the process, or edit the repository again.

33

Chapter 5

System Design

Based on the System Design Document Template by Briigge and Dutoit
[BD09], this chapter maps the findings of the analysis in chapter 4 to the
solution domain of the implemented system. First, we will give an overview
over the high-level architecture of the plugin and the considered design goals
and then provide visualizations of the decomposition of all relevant subsys-
tems.

5.1 Overview

Because the plugin provides an alternative, but not completely new way of
interacting with programming exercises, it can make use of the existing sys-
tems displayed in the analysis object model from the previous chapter (figure
4.5). Moreover, Artemis developers should be able to perform basic mainte-
nance tasks (as described in the nonfunctional requirements), so choosing to
connect the plugin to the Artemis Client minimizes the needed time to fa-
miliarize with Orion. Artemis developers already have experiences with the
client, which lowers the entry barrier when they have to work with the new
system. Instead of re-implementing solutions for already solved problems, we
thereby use the client to bootstrap the base features of Orion. These involve
common workflows such as starting and resuming programming exercises, or
reading through instructions.

All implementations of Artemis can be interfaced using the Artemis Con-
nector, which in turn routes calls originating from the client to the appro-
priate subsystem. As this is a bidirectional relationship, the connector can
report various internal system states to the client, so that it can react to
any actions within the IDE, e.g. by displaying a status message to the user.
Summarized, the connector provides a two-way adapter [GHJV95] to both

35

CHAPTER 5. SYSTEM DESIGN

IDE E

IDE State E

o

Orion E

Build and Test E

Artemis
Connector E

Artemis Project E

o O

5

VCS IDE Plugin E

Artemis Client E Local VCS Client E

Figure 5.1: Component diagram of the Orion system design. Depicted are the
most important components of the plugin and their connections to
external modules. Updated components are colored in blue, new
components in green.

the Artemis client and Orion. Additionally, it realizes a facade, that simpli-
fies all interactions with the VCS and IDE projects and makes them more
accessible to users of the platform.

As can be seen in figure 5.1, besides the connector, Orion is split up into
two other subsystems:

Build The Build component handles incoming test results from the CIS
and structures them according to the tasks in the instructions of the exercise.
It displays these feedbacks to the user and enables him to analyze potential
errors in the submission. Alternatively, if a user triggers a local build, this
component creates all necessary configurations and executes the plan.

36

5.2. DESIGN GOALS

Artemis IDE Project The project component manages all imported ex-
ercises by tracking and updating the generated IDE projects, which in turn
contain the downloaded repositories. The interface to the VCS IDE Plugin
allows Orion to simplify complex version control systems such as Git for in-
experienced users. Nevertheless, if required by a new feature, the full set of
VCS operations is still available and only needs to be added in the internal
adapter.

5.2 Design Goals

In the following, we prioritize the from the nonfunctional requirements de-
rived design goals. They aid in the decision making process when imple-
menting the system, as potential trade-offs can be weighed based on this
prioritization. Therefore, the following list ranks them based on their impor-
tance from highest to lowest:

1. Usability Orion focuses on making it as easy as possible for new users
to work with the Artemis platform. Additionally, the usability of the sys-
tem compared to traditional approaches influences the decision of instructors
whether to use Artemis in future courses, or recommend it to colleagues.
Therefore, it is necessary to provide the users with an intuitive and simple
UI (NFRU.3, NFRU.5), which introduces an improved workflow requiring
fewer user interactions (NFRU.1, NFRU.2).

By the plugin hidden complex details of a VCS are especially important
to students on a beginner level. Lowering the total amount of necessary
interactions with a VCS makes the system more approachable and lowers the
entry barrier (NFRU.1, NFRU.2). Users should be able to expect the same
functionalities that the current system offers with regards to programming
exercises, so the same interactions (start exercise, view instructions, etc.) as
already available in the Artemis Client should also be available when working

with Orion (NFRU.4).

2. Performance The existing workflow for programming exercises using
the online code-editor can be seen as a benchmark that Orion should be able
to match (NFRP.2). Because the plugin should be a preferred alternative
to existing approaches, performance cannot be noticeably worse. In order
to not negatively affect the user experience due to disproportionately high
idle times caused by a bad performance, the plugin has to add a low over-
head to the regular usage of the IDE. This involves the execution time of
often performed actions such as downloading, or submitting the code for a
participation (NFRP.2), or analyzing build results (NFRP.3).

37

CHAPTER 5. SYSTEM DESIGN

Moreover, if there is a waiting period due to an unpreventable time consuming
operation (e.g. a build), unrelated UI elements should not get blocked. Users
should be allowed to still work on the exercise, while time intensive processes
finish execution in the background (NFRP.1).

2. Supportability As Artemis is a project which steadily evolves, Orion
has to be extendable if there is an update related to programming exercises.
New features in this area might have an impact on the plugin and require
adaptations to the implementation. Ideally, the developer, who is responsible
for an update to Artemis, should also be able to implement any needed

changes to Orion (NFRS.1, NFRS.2).

From a users perspective, just as it is the case with the Artemis client, a
plugin has to support the most commonly spoken languages with regards
to its user base. As of the writing of this thesis, the client is available in
English and German localizations, so Orion should also offer translations in
these cases (NFRS.3). Lastly, as IDEs can be installed on a variety of oper-
ating systems, Orion should match all by the IDE supported environments
(NFRS.4).

5.3 Subsystem Decomposition

The in figure 5.1 depicted system can be further decomposed. Hence, this
sections provides an analysis of the previously mentioned three subsystems
of Orion and illustrates how the plugin interfaces off-the-shelf components
[BD09]. We explain how existing systems and IDE Plugins are used to com-
bine VCS, IDE Project and Artemis functionalities.

5.3.1 Connector Components

Because the before mentioned supportability goals require the reuse of parts
of the existing Artemis platform in Orion, we have to provide a connection
between those two components. This results in two connectors (see figure
5.2), which link the in the IDE installed plugin (and thereby the IDE itself)
with Artemis. As already mentioned, these components are divided between
a so called Orion Connector and a Client Connector, a result of two different
possible directions of communication:

1. The client can call specific service interfaces on the Orion Connec-
tor related to the different interactions with programming exercises.
We distinguish between the Ezxercise Service, which facilitates the im-
port and management of exercises, the VCS Service, which exposes the

38

5.3. SUBSYSTEM DECOMPOSITION

IDE E
Orion E
Orion Connector E Client Connector E
5 Exercise a) vecs é) Build Plan f! Orion State
7 service 7 service & Service O Service
Artemis Application Client E
Orion Facade E
A
Programming Exercise E

Figure 5.2: Component diagram of the connector subsystem between Artemis
and Orion. The bidirectional relation allows for responses to invo-
cations on both sides of the connection. Details of the connections
between the systems are hidden behind a facade. New components
are colored in green

update and submit functionalities of all downloaded repositories and
finally the Build Plan Service, which wraps the running of builds and
reporting of executed tests.

2. The Client Connector informs the client about any changes to the
internal state of the plugin. The state is defined by the opened exercise
and reflects whether there currently is an ongoing build, submit, or
update. Any incoming state changes get then propagated via the Orion
State Service to the client, where a visual representation of the ongoing
process is displayed to the user.

In the client a new Orion Facade hides all details related to the connec-
tion to the plugin. With the goal of low coupling between the major systems,

39

CHAPTER 5. SYSTEM DESIGN

the existing Programming Ezercise component only needs to interact with
this facade if it has to communicate with the IDE. Furthermore, all service
interfaces between client and plugin get moved to the IDE in order to mini-
mize additions to the client. Orion should be an itself closed system, which
contains all necessary implementations for connecting to Artemis. The result-
ing high cohesion within the plugin allows the client to only require generic
interfaces in the facade.

5.3.2 Build Components

Depending on whether the user wants to build the exercise locally, or run it
on the CIS, we need to provide different run configurations in the IDE. A run
configuration bundles all settings related to executing the implemented code
and the rules for parsing the output of the execution. Figure 5.3 visualizes
the two different types of configurations and shows how they are connected
to the remaining system components. The first steps of editing an exercise
as an instructor always include running the code locally. Orion uses a Local
Run Configuration, which is already connected to the Test Result Interpreter
of the IDE. The interpreter collects all results and displays them to the user.

Because the interpreter can only process messages, that adhere to an IDE
standardized format, the plugin has to interject a Test Result Translator that
can parse the from the Remote Build component received results. The in fig-
ure 4.5 introduced proxy is placed between the translator and the interpreter
in order to provide intermediate local results, which can be produced by the
associated local configuration.

5.3.3 Exercise Components

The central Ezercise component (see figure 5.4) creates, tracks and updates
all programming exercises. If the user decides to import a new exercise, the
Artemis IDE Project Creator is responsible for generating all for the IDE
relevant files that constitute an Artemis project. The non-existing connection
to the Artemis IDE Project is intentional, because the creator should not
concern itself with the underlying relations between project files and actual
exercise. For that purpose, we introduce the Ezercise Registry. The creator
is therefore stateless and does not reference any created project.

The registry keeps track of all imported exercises, while also being able
to register a project that has been moved or copied. This is based on the
aggregation between projects and the IDE from the analysis object model,
which states that projects can exist independently. Thus, the Artemis IDE

40

5.3. SUBSYSTEM DECOMPOSITION

Project is lowly coupled to Orion and does not rely on references to any

plugin internals, which would bind it to the a specific IDE instance.

Lastly, the repository update, submit and download functionalities are
built upon an existing VCS Plugin for the used IDE. In order to properly
connect such a plugin to the FExercise component of Orion, there is a VCS
Adapter, which offers all for these processes necessary interfaces and trans-
lates and forwards all invocations to the underlying VCS Plugin.

2]

IDE
Orion E
Remote Build E Local Build E
? V v

Test Result
Translator

2]

Remote Run E ______>

Configuration

Local Run
Configuration

2]

Remote Build
Proxy

2]

Test Result
@ Service

Test Result Interpreter E

Figure 5.3: Component diagram of the build plan systems in Orion and the re-
porting of test results. Orion distinguishes between remote and local
build plans. In the remote variant, the results pass through a transla-
tor, which parses the feedback into a standardized IDE format. The
proxy displays an intermediate local result until the remote build
finishes execution.

41

CHAPTER 5. SYSTEM DESIGN

IDE E
VCS Plugin E

O

Orion E

VCS Adapter E

A

Exercise E

. . Artemis IDE
Exercise Registry E Project Creator E
V
Artemis IDE
Project E

Figure 5.4: Component diagram of the exercise subsystem of Orion. VCS related
functionalities are enabled by providing an adapter to the existing
VCS plugin of the IDE. Imported projects get tracked by a dedicated
registry.

5.4 Hardware Software Mapping

With the introduction of Orion as an alternative access point to the Artemis
Client, the by Montag described hardware software mapping has to be up-
dated [MK17]. Visualized in figure 5.5, the student’s machine now doesn’t
contain three separate components (Artemis client, IDE and VCS client)
anymore. Assuming Orion is installed, the IDE is now fully integrated into
the Artemis deployment, thereby closing the gap between the Artemis and
VCS clients. The current version of Orion has been implemented for IntellilJ,

42

5.4. HARDWARE SOFTWARE MAPPING

but the general system architecture including the analysis object model and
subsystem decomposition can be applied for all IDEs. Orion is designed with
a potential port to different IDE instances in mind, so all models that we
have shown so far are independent from any concrete instantiation.

Apart from the newly connected components, the base deployment of
the system is identical with the old design: VCS and CIS interact with the
Artemis Application Server by providing and building the source code related
to programming exercises. With regards to the CIS, these builds can be
performed directly on the CI server, or by a number of external build agents.
Agents allow an improved scalability in the case of high loads. The IDE
can fetch the source code directly using the installed VCS client and receive
processed and formatted test results via the Artemis Application Server.

<<infrastructure>>

University Data Center <<infrastructure>>

laas Provider Data Center

<<device>>

Version Control Server <<device>>

Continuous Integration Server <<instance>>

Continuous Integration Instance

Continuous E ------ Remote Build Agent $:|
System
Build Agent @

Version Control 3 |
System

m

O

<<device>>
Artemis Server

Artemis Application 3 | |

Server

]

<<device>>
University User Management Server

University User E
O A\ Management Service
<

<<infrastructure>> <<infrastructure>>
Student Machine Course Platform Data Center

Artemis Application E
Client

- c
] :

Eclipse with Orion NetBeans with Orion T

<<device>>
Course Platform Server

IntelliJ with Orion

Version Control $:] ,,,,,,,,,,,,,,,,,,,
Client

Figure 5.5: Hardware software mapping of Artemis and Orion, adapted from
[MK17]. Orion connects the previously unrelated Artemis and ver-
sion control clients. Updated Artemis components are colored in
blue, new components in green.

43

Chapter 6

Object Design

This chapter introduces refinements related to the subsystems defined in
chapter 5. As described in [BD09], we provide specifications of the concrete
implementation of objects from a solution domain perspective including the
offered operations, their visibilities and signatures. Throughout this process
we use design patterns [GHJIV95] to efficiently solve challenges related to the
implementation. In order to understand the design decisions, we have to first
explain some of the underlying technologies used by Artemis and Orion in
the following sections.

6.1 Support for the IntelliJ IDE

Orion is written in a mix of Java! and Kotlin? and currently supports the
installation in the IntelliJ IDE. The reasoning behind this mix is that the
main developer of IntelliJ - JetBrains - is currently migrating the codebase
from Java to Kotlin. Consequently, in order to be consistent with the latest
conventions, all IntelliJ specific plugin subsystems are also implemented in
the same language. However, allowing to port the plugin to other IDEs is
still an option since the IDE independent core functionalities are based on
Java and define generic interfaces that can then be implemented using IDE
specific solutions. The following section explains why IntelliJ was chosen to
be the first supported IDE and what implications IntelliJ’s architecture has
on the current system.

Choosing IntelliJ The choice to support IntelliJ is based on the following
three main factors:

"https://www.java.com/
’https://kotlinlang.org/

45

https://www.java.com/
https://kotlinlang.org/

CHAPTER 6. OBJECT DESIGN

The market share of IntelliJ has been steadily growing over the course
of the past years. Surveys show, that users increasingly switch from the
main competitor of IntelliJ - Eclipse - to JetBrain’s IDE*%5. As pro-
gramming exercises should teach students knowledge relevant to current
and future software development, it is desirable to also reflect this in
the choice of the officially supported IDE. Therefore, Orion should be
available for IDEs that are actively used in productive environments.

Just like IntelliJ’s core, Orion is developed and released under an open
source license. Including closed-source dependencies would introduce
difficulties when maintaining the plugin, or developing new features.
Orion has to be integrated into the supported IDE, so developers have
to be able to get an insight into the codebase of the embedding platform
and reuse existing implementations without risking licensing conflicts.

The Artemis server is written in Java, the client in TypeScript. Frag-
menting the platform by introducing another programming language
raises the entry barrier for new developers and requires existing main-
tainers to learn an additional language if they are not familiar with it.
It is therefore desirable to develop Orion for an IDE, which allows plu-
gins to be based on the Java Development Kit (JDK). IntelliJ supports
both Java and Kotlin, which is interoperable with Java.

Architectural principles of IntelliJ IntelliJ provides a layered architec-
ture [BMR196] divided into three hierarchical levels:

1.

Application Layer All services related to the IDE application in-
stance. Operations influence the settings and systems of the whole

IDE.

Project Layer All services related to an IDE project. Operations only
influence the files in the scope of the project’s root directory

Module Layer All services related to an IDE project module. Projects
can have multiple modules under the root directory. Modules depend
on the parent project, but can be independent from each other.

This layered architecture is combined with an inversion of control (IoC) prin-
ciple [Mat99], which allows developers to define a range of services and the
level they should operate on. The IDE then injects the needed dependencies
during runtime. Orion mostly uses project services: Every class, that holds

3https://www.jrebel.com/blog/java-tools-map
‘https://www.baeldung.com/java-ides-2016
Shttps://www.jrebel.com/blog/java-trends-and-historical-data

46

https://www.jrebel.com/blog/java-tools-map
https://www.baeldung.com/java-ides-2016
https://www.jrebel.com/blog/java-trends-and-historical-data

6.2. CONNECTING ORION TO ARTEMIS

a project reference as a member variable can therefore be assumed to be a
project service.

6.2 Connecting Orion to Artemis

The Artemis Client is implemented using the Angular® framework, which
is based on the typesafe extension of the JavaScript language TypeScript”.
Relevant for the understanding of the connection between the IDE and the
Artemis client is the property of TypeScript to be fully backwards compatible
to JavaScript. Any JavaScript native operation can be used for communi-
cating with the Artemis client. Consequently, any in the IDE displayed web
browser can be used to establish a connection between the web client and the
IDE itself. Orion uses the JavaFX WebView®, which contains interfaces for
executing JavaScript code on the displayed web page from a Java application
and vice versa. Based on this framework, the plugin can set instances of Java
objects on the window object in the web view” and initiate a bidirectional
communication between Artemis and Orion via this reference. The disad-
vantage of this setup is the interfacing with non-typesafe JavaScript objects:
All interactions only support primitive datatypes (Integers, Floats, Strings,
Enumerations) and cannot directly serialize JSON' strings into plain old
Java objects (POJOs).

Additionally, the headers of JavaScript functions are not known to the
Java plugin, so any call to the client is performed by handing the WebEngine
of JavaFx a script in form of a plain String. Figure 6.1 illustrates how
Orion circumvents this limitations by introducing enumerations for all rel-
evant JavaScript invocations. Every function is represented by an enum
value, which holds the method name as a String and all argument types. Be-
cause the explicit function name is typed only once, i.e. when the developer
adds the function to the enum, other objects can never accidentally pass
the wrong names or parameters since all values are statically typed when
compiling the code. Services can then call the ezecuteJSFunction on the
ArtemisClientConnector and just pass the desired enum value, which also
hides the underlying implementation of the connection to the client. The
connector places these calls in a dispatch queue and waits for the client to

Shttps://angular.io/
"https://www.typescriptlang.org/
8https://docs.oracle.com/javase/8/javafx/api/javafx/scene/web/WebView.
html
9https://www.w3schools.com/jsref/obj_window.asp
Onttps://www.json.org/

47

https://angular.io/
https://www.typescriptlang.org/
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/web/WebView.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/web/WebView.html
https://www.w3schools.com/jsref/obj_window.asp
https://www.json.org/

CHAPTER 6. OBJECT DESIGN

finish initialization until all scripts get executed.

Lastly, the connector listens to all state changes of Orion (e.g. ongoing
submissions, builds, etc.) by subscribing to the relevant message topic on
the MessageBus. This follows a basic publish/subscribe pattern [Jac09] and
waits for publishers in Orion to emit new messages about new events.

Client Connector
<<inerface>>
JavascriptConnector
+ artemisLoadedWith(engine: WebEngine): void
+ initIDEStateListeners(): void
ArtemisClientConnector <<enumeration>>
JavascriptFunction

- project: Project

- artemisLoaded: boolean ON_EXERCISE_OPENED

- engine: WebEngine IS_CLONING

- dispatchQueue: Queue<Runnable> IS_BUILDING
TRIGGER_BUILD_FROM_IDE

- runAfterLoaded(task: Runnable): void

- executeJSFunction(function JavascriptFunction, args: Object[]): void - name: String
- argTypes: Class[]
+ execute(engine: WebEngine, args: Object): void
- areArgumentsValid(args: Object[]): boolean

1 1
IntelliJ Message Utils JavaFx
<<interface>> WebEngine
MessageBus

+executeScript(script: String): void

+ connect(): MessageBusConnection
+ syncPublisher(topic: Topic<L>): L
+ dispose(): void

Figure 6.1: Diagram of the Orion classes relevant for the connection to the
Artemis client. JavaScript functions are statically mapped using
an enumeration. The connector forwards important plugin state
changes by subscribing to the relevant topics on a message bus.

6.3 Connecting Artemis to Orion

The connector subsystem explained in the previous chapter describes how
linking the Artemis client to Orion requires multiple connector services.
Therefore, the design in figure 6.2 depicts the three main connector classes
related to tests, builds and the handling of exercises. All of these provide a
facade [GHJV95] to the linked client by binding multiple operations within

48

6.3. CONNECTING ARTEMIS TO ORION

the plugin to a simplified interface. This is especially important, because of
the non-typesafe way of setting up the interface on the JavaScript window
object: We want to keep the number of method invocations that have to
serialize the provided primitive arguments into a POJO to a minimum and
hide this fact completely from the internal components of Orion.

<<interface>> OrionBuildConnector
ArtemisConnector

+ onBuildStarted(instructions: String): void
+ attachTo(jsObject: JSObject, memberName: String): void + onBuildFinished(): void
+ onBuildFailed(): void
+ onTestResult(success: boolean, testName: String, message: String): void
+ buildAndTestLocally(): void

<<abstract>>
OrionConnector OrionExerciseConnector

project: Project <

+ editExercise(exerciseJson: String): void
+ workOnExercise(repositoryUrl: String, exerciseJson: String): void

OrionVCSConnector

+ submit(): void
+ selectRepository(repository: String): void

<<interface>>

ChangeSubmissionStrategy ChangeSubmissionContext

ubmissionStrategy

’ - project: Project

+ submitChanges(): void + determineSubmissionStrategy(): void
T + submitChangesToCurrentRepository(): void

Partici

- project: Project - project: Project

+ submitChanges(): void + submitChanges(): void

Figure 6.2: Class diagram of the connectors from the Artemis client to Orion.
Connectors are split up based on the related programming exercise
functionality. Submissions can be performed using different strate-
gies: Edit exercise vs. participate in exercise.

Low coupling between connectors The classification of connectors into
three areas of responsibility avoids the creation of one big controller class.
This lowers the probability of creating a Blob antipattern [BMMMO98]|, be-
cause future additions are less likely to be implemented in one single class. As
programming exercises might get extended with new features (e.g. new build
steps, repositories), all connecting interfaces have to be both extendable but
also maintainable and should therefore not get overloaded with unrelated
operations. This would only result in unnecessary high coupling.

49

CHAPTER 6. OBJECT DESIGN

As a result, the ArtemisConnector interface specifies only the attachement
method, which gets implemented by the abstract OrionConnector. This ab-
stract parent class attaches itself to the window object of the opened Artemis
client website. All extending implementations then only have to focus on the
actual handling of incoming requests from the client related to the workflow
of exercises. This is based on the reasoning that this workflow is not related
to the technical implementation of a connection between Java and JavaScript
code.

We can categorize subprocesses of this workflow into the exercise import
feature (ExerciseConnector), the handling of builds (BuildConnector) and
the final parsing of incoming test results (TestResultConnector). This has
the advantage of creating a separation of concerns within the component,
thereby keeping the different connector implementations use case specific
enough.

Supporting Different Submission Types Since Orion supports import-
ing an exercise as an instructor as well as a student, the submission of changed
code cannot be represented by the same process. The related connector and
called interface however are identical, because the triggering action for all
users is a generalized submit. A strategy pattern [GHJV95|, which focuses
on the underlying submission operations allows the plugin to determine the
submission algorithm during runtime based on the selected repository and
whether the user is a student, or an instructor. This also keeps the context
open to new strategies e.g. for teaching assistants.

6.4 Exercise services

The ExerciseService and all associated classes manage the handling of the
programming exercise in relation to the related Artemis IDE Project. This
includes the import of new exercises, opening of already imported ones and
the update of the wrapped repositories. The available operations and their
behavior rely on the state of the project in the IntelliJ. A state is a per-
sistent set of properties, scoped on a single project, or the whole IntelliJ
installation. The state gets loaded during the start of the development envi-
ronment, while a project state is only fetched for opened projects. At the end
of the relevant lifecycle, both get stored on the local filesystem. Figure 6.3
gives an overview over all for the exercise management relevant components.

Exercise Registry The ExerciseRegistry interface is the entry point for
all operations, which require information about the state of the in the IDE

20

6.4. EXERCISE SERVICES

GitAdapter

+ import(project: Project, repositoryUrl: URL, basePath: String): void
+ submit(project: Project)

+ submit(module: Module)

+ update(project: Project)

+ push(project: Project)

ExerciseService

mpor : i : void

+ il
+ i void
+ i void
<<interface>> <<interface>>
ExerciseRegistry RepositorySelector
+ isArtemisExercise(): boolean + getSelectedRepository(repository: repositoryType)
+ getExerciselnfo(): ExerciseState + setSelectedRepository(repository: repository Type)
+ iseld: long, view: : boolean
+ reg i i view: iseView, path: String): void

InstructorExerciseRegistry

ArtemisExerciseRegistry }<]— - project: Project

+ isOpenedAsInstructor(): boolean

GlobalExerciseRegistryStateService ArtemisProjectStateService <<enum>>
ExerciseView
- instructorimports: Map<Long, String> - exercise: ProgrammingExercise
- participationimports: Map<Long, String> - project: Project INSTRUCTOR
- project: Project STUDENT

+ isArtemisExercise(): boolean
: view: , path: String): void :99:2“"99‘\"5_";;‘" E*S'C'SEVEW)
+g i : long, view " String getExercise(): ProgrammingExercise

Figure 6.3: Class diagram of the Orion IDE project object design. The plugin
uses the adapter pattern in order to provide an interface to the Git
plugin of IntelliJ. Orion tracks imports by keeping an application
wide registry with references to all downloaded exercises.

imported exercises. Because, there is a general set of methods that should
be available to all users, independent of their role, there exists one single
ArtemisExerciseRegistry that provides an implementation of the inter-
face. This class is open to extensions by use cases that require additional op-
erations. Editing an exercise as an instructor includes dealing with multiple
repositories in a single project. Hence, instructors have to be able to select the
repository they are currently working on. The InstructorExerciseRegistry
is therefore introduced to provide support for an ExerciseRegistry in com-
bination with a RepositorySelector.

Exercise Registry States Because Artemis IDE projects can be moved
between IDE installations, or just be persisted and opened on a filesystem

o1

CHAPTER 6. OBJECT DESIGN

with a simple code-editor, the ArtemisProjectStateService holds all for a
single imported exercise relevant properties. Properties are relevant, if they
are needed for identifying the exercise, fetching the selected repository (for
instructor imports) or deciding whether the exercise was imported because
of a participation (student) or in order to edit it (instructor). All of this
information is stored in a project scoped state within the project configura-
tion, so the IDE can identify and re-import it, e.g. if it has been moved or
the IDE got re-installed.

On the application layer, the GlobalExerciseRegistryStateService tracks
the paths of all imported exercises using a map of

exerciseld — pathOnLocal Filesystem

This way, the IDE specific implementation regarding the tracking of imports
is clearly separated from the project itself, further ensuring the low coupling
between Orion and generated projects.

6.5 Remote Build Result Processing

The in the previous chapters described proxy has to be placed between a
console responsible for displaying build results and any process, which might
report remotely executed tests. Therefore, Orion adds a new type of build
setup to the IDE, that can seamlessly switch between intermediary local
results and the structured presentation of remote build feedback. A diagram
containing all relevant classes can be found in figure 6.4.

Remote build configuration The RemoteBuildService acts as an entry
point for all processes related to remote build executions. It triggers the build
process in the IDE, which uses an internal DefaultProgramRunner to execute
a new process using the RemoteBuildCommandLineState. This custom state
encapsulates the run configuration and any spawned process and manages the
executed build. CommandLineStates in general are IntelliJ native classes,
that bundle processes with consoles and produce execution results to be
handled by the calling IDE components. Consoles can display any form of
information passed to them, though they might specialize in different types of
information such as test results (like the SMTRunnerConsoleView). This way,
a custom run configuration can use existing consoles (for displaying the run
output to the user), while attaching them to customized processes, or vice
versa. The RemoteBuildCommandLineState of Orion supplies a standard
test console with the by the TestResultTranslator parsed remote build
results.

52

6.5. REMOTE BUILD RESULT PROCESSING

1

IntelliJ Runners

<<interface>>
DefaultProgramRunner

Orion Remote Build

RemoteBuildCommandLineState RemoteBuildService

- project: Project - project: Project
- environment: ExecutionEnvironment

+ startRemoteBuild(instructions: String): void

+ startProcess(): ProcessHandler
+ execute(executor: Executor, runner: ProgrammRunner): ExecutionResult

TestResultTranslator

- project: Project

+ onTestingStarted(): void

+ onTestingFinished(): void

+ onTestResult(success: boolean, name: String, result: String): void
+ onCompileError(file: String, error: BuildError): void

+ parseTestTreeFrom(instructions: String): void

+ reportToProcessHandler(handler: ProcessHandler): void

NopBuildProxyProcessHandler

- project: Project

+ startNotify(): void
+ notifyProcessTerminated(exitCode: int)

1

IntelliJ Testframework Ul

SMTRunnerConsoleView |

Figure 6.4: Class diagram related to the reporting of test results created by re-
mote builds. A stand-in proxy will allow future updates to display
preliminary local results until a fitting remote result has been re-
ported to the IDE.

Test result translation Because form the Artemis Client incoming test
results do not conform to the by IntelliJ standardized format, we introduce an
intermediary translator. Furthermore, these results have to be remapped to
the instructions of the programming exercise, so that the user can more easily
understand the root of potential errors. Therefore, the result translator is
also able to create a tree of tasks and subtasks out of the exercise instructions,
which reference specific test cases. As the instructions contain identifiers of
these tests [MK17], the translator can then inject the concrete results into this
test tree and forward a structured report to the IDE. Figure 6.5 depicts how
exercise instructions can form a tree-like structure when they are grouped
based on the unique task and test names.

Proxying build results The proxy pattern [GHJV95] allows Orion to
display a preliminary local result, so that users do not have to wait for re-
mote builds to finish execution until they can react to potential errors. Due to

23

CHAPTER 6. OBJECT DESIGN

Programming Exercise Test Tree

Exercise
Task 1 Task 2
Tests: [t1-1, 11-2] Tests: [t2-1]
Y Y Y
Subtask 1 Subtask 1 Subtask 2
Tests: [t1.1-1] Tests: [t2.1-1] Tests: [t2.2-1, t2.2-2]

Figure 6.5: Example of an exercise divided into tasks and tests. Every task can
relate to multiple tests. Instructions can always be represented by a
tree, from which structured test results can be built.

time constraints, a full proxy is not yet implemented. The existing class only
offers passthroughs of remote results: The NopBuildProxyProcessHandler
represents an empty no operation process, which keeps reporting a running
build to the SMTRunnerConsoleView of the IDE. This creates the impression
of a local test execution to the user, who expects this type of behavior from
regular local test runs and is therefore presented with a familiar UI. As soon
as the actual results arrive, the proxy just behaves as any normal process
handler and forwards the translated values to the console view. A full proxy
will be implemented in future iterations of the plugin.

o4

Chapter 7

Summary

This final chapter summarizes the work and the conclusions of this thesis.
We evaluate the current status of Orion and list all realized and open goals.
This is concluded with a recap of all solved problems and an outlook on
future work.

7.1 Status

In this section we list reports regarding all functional requirements related
to their completion state. We categorize these goals in three statuses and
provide explanations if some have not been fully implemented, yet. We define
the following three categories:

@ Fully implemented: The goal is has been fully realized. No addi-
tional work is necessary.

© Partially implemented: The goal has only been fulfilled to a certain
degree. Additional work is necessary.

O Not implemented: Implementation for this goal has not been
started, yet. This goal is moved to future work.

We integrated Artemis and its client into a modern IDE eliminating
any media disruption caused by the fragmentation of the Ul into an IDE,
VCS client and Artemis client. This could be achieved by implementing
the IDE plugin Orion and connecting it to interfaces relevant to Artemis
and VCS processes. The developed plugin can be installed by students and
instructors and used for the exercise participation and administration. We
decoupled the generated Artemis IDE projects from Orion, so that users
can freely choose the storage location and move already downloaded projects
without breaking the connection to the IDE (see table 7.1).

25

CHAPTER 7. SUMMARY

Functional Requirement Status
FR3.1 Generate Artemis IDE project for exercise ®
FR3.2 Generate Artemis IDE project for participations o
FR3.3 Customize storage location o
FR3.4 Move Artemis projects o

Table 7.1: Status of functional requirements related to the Artemis IDE project
functionality

We further created new local run configurations for Artemis IDE projects,
which can be used by instructors to test their changes to an exercise repos-
itory on their local machine. Moreover, all users can directly trigger builds
on the Artemis CIS from within the IDE for all imported exercises. We
improved the responsiveness and performance of the feedback and re-
finement process of the programming exercise workflow, as build results get
immediately displayed in the IDE after they have been reported to the client.
Users are able to react more quickly to potential errors in their submitted
code as a result (see table 7.3). Dynamically switching out local with remote
results is currently not fully implemented. The proxy and all necessary as-
sociations exist, but are restricted to a passtrough mode. As a consequence,
only remote or local results can be displayed. The integration of simultane-
ously running a local build during remote execution has to be realised in a
future update.

With regards to the version control functionalities, we introduced an
adapter to the IDE’s VCS plugin and hide complex VCS operations behind
the user interface of Orion. Thus, we lowered the entry barrier for in-
experienced users and provided them with the toolset to easily perform all
for the programming exercise workflow necessary VCS interactions. How-
ever, we were not able to realise an automatic conflict resolution process as
repositories can end up in multiple conflict states. Resolving these while still
giving the user some control over the chosen approach requires more time
and will therefore be moved to future work. The download of student’s sub-
missions is also not possible, but there already exist the required interfaces
and methods in the VCS adapter. The remaining teaching assistant services
and client connections have to be released in future versions of Orion.

7.2 Conclusion

In this thesis we developed the IDE plugin Orion. We connected the VCS
and Artemis clients with IntelliJ to overcome media disruptions when work-

26

7.2. CONCLUSION

Functional Requirement Status
FR2.1 Download participation o
FR2.2 Download base repositories o
FR2.3 Download student’s submissions D)
®
O

FR2.4 Edit exercise in one project
FR2.5 Resolve conflicts
FR2.6 Submit changes

Table 7.2: Status of functional requirements related to the VCS functionality

Functional Requirement Status
FR2.1 Test base participations locally o
FR2.2 Build participations remotely o
FR2.3 Analyze test results ®
FR2.4 Display build results faster D)

Table 7.3: Status of functional requirements related to building and testing

ing with programming exercises in Artemis. Because of Orion, exercise ad-
ministration and participation processes can be performed within an IDE
project. Users no longer have to interact with multiple Uls, but only need
one central application to use Artemis. Furthermore, we hide complex VCS
operations behind the plugin, which lowers the entry barrier, especially for
programming beginners.

We allow students to import their participations and submit code changes
directly through the IDE. Test results are displayed in a structured way
according to the tasks of the exercise, so users can analyze potential errors
more easily. Instructors are provided with the possibility to import all base
repositories into a single IDE project, allowing them to edit exercises more
efficiently. Moreover, manual copy processes are no longer needed in order to
test template and solution repositories locally. We enabled this simplification
by introducing the local build feature with Orion.

We developed a first prototype, which was tested by a group of beta
users. We used the feedback from this release for our formative development
process and adapted the requirements accordingly. Summarized, the current
version of Orion allows users to interact with Artemis using an IDE with a
comprehensible UI, which makes the whole platform more approachable and
does not require switches between different systems and GUIs.

57

CHAPTER 7. SUMMARY

7.3 Future Work

There still are open goals regarding the development of Orion and new fea-
tures, which would potentially improve the plugin and the user experience
in several ways. Accordingly, the following section describes relevant future
work.

Support for teaching assistants Submissions of users sometimes have
to be graded manually by teaching assistants after the automatic testing
process. This can have various reasons, e.g. if the solution to an exercise
might be partially correct and an automatic test would not be able to reflect
this. Teaching assistants should therefore be able to download a submission,
so that they are able to run additional tests and determine a grade based on
their findings from within an IDE. Orion already implements all necessary
interfaces and adapters to the VCS plugin of IntelliJ in order to clone any
remote repository into a new project. New Ul elements in the Artemuis client
and the addition of a TEACHING_ASSISTANT type to the available exercise
views would complement the missing feature.

Code reviews The current model in Artemis does not allow manual re-
sults for programming submissions to directly link to concrete code passages.
However, it can be beneficial to the learning process, if code reviews are
applied to help the student better understand specific errors or bad prac-
tices. Peer reviews have been found to have a significant impact on student’s
learning [WLF*T12]. Orion could integrate reviews into the IDE by allow-
ing instructors and teaching assistants to directly add comments to parts of
the submitted code in the IDE’s editor. Students would then be able to see
markings on these passages and read the related comments.

Plugins for code review services of external VCS and review platforms like
GitLab or Upsource by JetBrains are already available for IntelliJ':2. While it
is possible to integrate these external workflows into Orion, the result would
be a dependency on a concrete service provider and IDE implementation.
An independent solution would be to either commit hidden files including
review comments and code section information to the submitted repository,
or create new code review database models on the Artemis server. Reviews
could then also be integrated into the online code-editor, which would add
the benefit of an interoperability of reviews between the editor and IDE.

Inline hints Hints have already been integrated into Artemis in previous
work [Beh19]. Currently, these can be assigned to individual tasks in the

"https://plugins.jetbrains.com/plugin/7223-code-review-for-intellij-idea
’https://www.jetbrains.com/help/upsource/codereview-ide-plugin.html

o8

https://plugins.jetbrains.com/plugin/7223-code-review-for-intellij-idea
https://www.jetbrains.com/help/upsource/codereview-ide-plugin.html

7.3. FUTURE WORK

exercise instructions, but not to a specific line in the template code. Using
Orion, instructors could assign hints directly in the IDE’s editor to rele-
vant source code sections. If tests related to a code passage referenced by a
hint fail, Orion would display the hint to the user. The implementation of
this feature would be similar to the independent approach for code reviews,
meaning an update for the database models of hints, or hidden files in the
repository with all required information.

Team based exercises The grouping of students in teams, who work on
exercises together, has positive influences on the learning effect in various
aspects [KSB'10, Las09]. Orion could integrate these benefits by having
multiple students edit a repository together. Any changes to the source
code would be visible in the editor of the IDE and different colors could
indicate which participant is currently working on which line, or file. Current
approaches range from visualizing changes to simultaneously edited files®*
to live transmissions of the cursor movements and edits for every single line
of code®. The live transmission is based on the external provider Floobits®,
but the code of the plugin is released under an open source license and could
be analyzed and used as a basis for an independent solution for Artemis and
other learning platforms.

Automatic conflict resolution Asynchronous changes in multiple repos-
itory instances can result in different conflict states. If users then try to
synchronize their local repository with a remote version containing changes
to the same code sections, version control systems can no longer merge the
changes without manual intervention. This is one of the most complicated
and error-prone processes when dealing with a VCS and requires users to
be aware of the outcome of their chosen resolution approach. Orion should
simplify these approaches by only offering two basic options: Overwrite all
remote changes with the local ones, or Querwrite the local changes with the
remote ones. Additionally, the plugin could offer a third option for experi-
enced users, who still want to resolve all conflicts manually. The adapted Git
plugin of IntelliJ already offers resolution options. Orion could use these by
intercepting conflict events when pulling and merging a repository, or alter-
natively just delegating any conflict states to the IntelliJ plugin in the first
place.

3https://devpost.com/software/can-ttouchthis
‘https://gitlab.com/Fantailed/cant-touch-this
Shttps://github.com/Floobits/floobits-intellij/
Shttps://floobits.com/

29

https://devpost.com/software/can-ttouchthis
https://gitlab.com/Fantailed/cant-touch-this
https://github.com/Floobits/floobits-intellij/
https://floobits.com/

List of Figures

1.1
1.2

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
2.3
5.4
9.9

6.1
6.2
6.3
6.4
6.5

Automated assessment process of Artemis 5
Use case diagrams of a student solving a programming exercise 6

Screenshot of an opened project in IntelliJ with plugins 10
Distributed version control 12
Typical CI + VCS setup in Artemis 12
Code review of a submission in TMC 14
Architecture of TMC 15
Feedback for a failed submission using the Edu Tools plugin . 16
CodeOcean online editor 18
High level architecture of CodeOcean 18
Current system components of Artemis programming exercises 20
Proposed system of Orion 21
Import/resume exercise use cases 27
Exercise submission use cases 28
Analysis object model of Orion 29
Activity diagram of an an instructor editing an exercise 32
Overview of the Orion system design 36
Connector subsystem between Artemis and Orion 39
Build plan systems in Orion 41
Exercise subsystem of Orion 42
Hardware software mapping of Artemis and Orion 43
Orion connector to Artemis client 48
Connectors to Orion 49
Orion IDE project object design o1
Classes related to the reporting of remote test results 53
Example of an exercise test tree 54

60

List of Tables

7.1

7.2

7.3

Status of functional requirements related to the Artemis IDE
project functionalityo 56
Status of functional requirements related to the VCS function-
Ali6Y . 57
Status of functional requirements related to building and testing 57

61

Bibliography

[BD0Y]

[Beh19]

[BMMMO8]

[BMR*96]

[Boo90]

[CS14]

[FFO6]

[GHJIV95)

[Jac09]

Bernd Bruegge and Allen H. Dutoit. Object-Oriented Software
Engineering Using UML, Patterns, and Java. Prentice Hall
Press, USA, 3rd edition, 2009.

Jan-Thilo Behnke. Extenstion of programming exercises in
artemis. Master’s thesis, Technical University of Munich, 2019.

William H. Brown, Raphael C. Malveau, Hays W. “Skip” Mc-
Cormick, and Thomas J. Mowbray. AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis. John Wiley &
Sons, Inc., USA, 1st edition, 1998.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Som-
merlad, and Michael Stal. Pattern-Oriented Software Architec-
ture - Volume 1: A System of Patterns. Wiley Publishing, 1996.

Grady Booch. Object Oriented Design with Applications.
Benjamin-Cummings Publishing Co., Inc., USA, 1990.

Scott Chacon and Ben Straub. Pro Git. Apress, USA, 2nd
edition, 2014.

Martin Fowler and Matthew Foemmel. Continuous integra-
tion. Thought-Works) http://www. thoughtworks. com/Contin-
uwous Integration. pdf, 122:14, 2006.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Longman Publishing Co., Inc., USA,
1995.

Hans-Arno Jacobsen. Publish/Subscribe, pages 2208-2211.
Springer US, Boston, MA, 2009.

62

BIBLIOGRAPHY

[KS18]

[KSB*10]

[KvFA17]

[Las09]

[Mat99]

[MK10]

[MK16]

[MK17]

[0'M02]

[PLVV13]

Stephan Krusche and Andreas Seitz. Artemis: An automatic
assessment management system for interactive learning. In Pro-
ceedings of the 49th ACM Technical Symposium on Computer
Science Fducation, pages 284-289. ACM, 2018.

Paul Koles, Adrienne Stolfi, Nicole Borges, Stuart Nelson, and
Dean Parmelee. The impact of team-based learning on medical
students’ academic performance. Academic medicine : journal
of the Association of American Medical Colleges, 85:1739-45, 09
2010.

Stephan Krusche, Nadine von Frankenberg, and Sami Afifi. Ex-
periences of a software engineering course based on interactive
learning. In SEUH, pages 32-40, 2017.

Patricia Lasserre. Adaptation of team-based learning on a first
term programming class. In Proceedings of the 1/th Annual
ACM SIGCSE Conference on Innovation and Technology in
Computer Science Fducation, ITiCSE 09, page 186-190, New
York, NY, USA, 2009. Association for Computing Machinery.

Michael Mattsson. Object-oriented frameworks. 04 1999.

Catherine Mulryan-Kyne. Teaching large classes at college and
university level: Challenges and opportunities. Teaching in
Higher Education, 15(2):175-185, 2010.

Dominik Miinch and Stephan Krusche. Conducting interactive
programming exercises in large lectures. Master’s thesis, Tech-
nical University of Munich, 2016.

Josias Montag and Stephan Krusche. Conducting interactive
programming exercises in online courses. Master’s thesis, Tech-
nical University of Munich, 2017.

Siobhan Clare O’Mahony. The Emergence of a New Commer-
cial Actor: Community Managed Software Projects. PhD thesis,
Stanford University, Stanford, CA, USA, 2002. AAI3048587.

Martin Partel, Matti Luukkainen, Arto Vihavainen, and

Thomas Vikberg. Test my code. International Journal of Tech-
nology Enhanced Learning 2, 5(3-4):271-283, 2013.

63

BIBLIOGRAPHY

[RocT5]

[SK18a]

[SK18b)]

[SKT+16]

[STM17a]

[STM17b]

[TWS17]

[VVLP13]

[WK19]

M. J. Rochkind. The source code control system. IEEE Trans-
actions on Software Engineering, SE-1(4):364-370, Dec 1975.

Valentin Schlattinger and Stephan Krusche. Extending artemis:
Interactive live quizzes in the classroom. Master’s thesis, Tech-
nical University of Munich, 2018.

Marius Schulz and Stephan Krusche. Assessment of solutions
to modeling exercises in education. Master’s thesis, Technical
University of Munich, 2018.

T. Staubitz, H. Klement, R. Teusner, J. Renz, and C. Meinel.
Codeocean - a versatile platform for practical programming ex-
cercises in online environments. In 2016 IEEE Global Engineer-
ing Education Conference (EDUCON), pages 314-323, April
2016.

T. Staubitz, R. Teusner, and C. Meinel. Towards a repository for
open auto-gradable programming exercises. In 2017 IEEE 6th
International Conference on Teaching, Assessment, and Learn-
ing for Engineering (TALE), pages 66-73, Dec 2017.

Thomas Staubitz, Ralf Teusner, and Christoph Meinel.
openhpi’s coding tool family: Codeocean, codeharbor, codepilot.
In ABP, 2017.

R. Teusner, N. Wittstruck, and T. Staubitz. Video conferencing
as a peephole to mooc participants: Understanding struggling
students and uncovering content defects. In 2017 IEEE 6th In-
ternational Conference on Teaching, Assessment, and Learning
for Engineering (TALE), pages 100-107, Dec 2017.

Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Mar-
tin Partel. Scaffolding students’ learning using test my code.
In Proceedings of the 18th ACM Conference on Innovation and
Technology in Computer Science Education, ITiCSE 13, page
117-122, New York, NY, USA, 2013. Association for Comput-
ing Machinery.

Julian Willand and Stephan Krusche. Refactoring and extend-
ing the uml modeling editor apollon. Master’s thesis, Technical
University of Munich, 2019.

64

BIBLIOGRAPHY

[WLF*12]

Yanqing Wang, Hang Li, Yuqgiang Feng, Yu Jiang, and Ying
Liu. Assessment of programming language learning based on
peer code review model: Implementation and experience report.
Computers & Education, 59(2):412-422, 2012.

65

	Introduction
	Problem
	Motivation
	Objectives
	Outline

	Background
	Integrated Development Environments
	Dependencies of Programming Exercises

	Related Work
	Test My Code
	JetBrains Edu Tools
	Coding Tools of the openHPI Platform

	Requirements Analysis
	Current System
	Proposed System
	Functional Requirements
	Nonfunctional Requirements

	System Models
	Scenarios
	Use Case Model
	Analysis Object Model
	Dynamic Model

	System Design
	Overview
	Design Goals
	Subsystem Decomposition
	Connector Components
	Build Components
	Exercise Components

	Hardware Software Mapping

	Object Design
	Support for the IntelliJ IDE
	Connecting Orion to Artemis
	Connecting Artemis to Orion
	Exercise services
	Remote Build Result Processing

	Summary
	Status
	Conclusion
	Future Work

