

March 3, 1998

DRAFT - DO NOT DISTRIBUTE

7. Requirements

Analysis

ÒDetails count.Ó

-

Peter Weinberger, Bell Labs

Requirements analysis

results into a model of the system that aims to be correct, complete,
consistent, and veriÞable. Developers formalize the system speciÞcation produced during
requirements elicitation and examine in more detail boundary conditions and exceptional
cases. Developers correct and clarify the system speciÞcation if any errors or ambiguities are
found. The client and the user may be involved in this process, especially when the system
speciÞcation needs to be changed and additional information gathered.

In object-oriented analysis, developers build an analysis model describing the application
domain. For example, the analysis model of a watch describes time according to the watch
(e.g., Does the watch know about leap years? Does it know about the day of the week? Does
it know about the phases of the moon?) The analysis model is then extended to describe
how the actors and the system interact to manipulate the application domain (e.g., How
does the watch owner resets the time? How does the watch owner resets the day of the
week?). Developers use the analysis model, together with nonfunctional requirements, to
establish the architecture of the system during high-level design (see Chapter 8,

System
Design

).

In this chapter, we discuss in more detail requirements analysis. We focus on the
identiÞcation of objects, their behavior, their relationships, their classiÞcation, and their
organization. We review brießy non object-oriented analysis presentations and methods.
Finally, we describe management issues related to requirements analysis in the context of a
40 person project such as PROSE.

Introduction: an optical illusion

DRAFT-DO NOT DISTRIBUTE

2

 of

 44

Requirements Analysis

7.1. Introduction: an optical illusion

Consider Figure 80: what do you see? An eskimo peering into a cave? In Figure 81, the class
diagram on the left would then be the corresponding analysis model. You could spend a lot
of effort detailing this object model to account for the details in the drawing of Figure 80.
However, instead of seeing an eskimo, you might have seen an indian head, in which case
the object model in the right of Figure 81 is what you would have derived from this
description.

If the drawing in Figure 80 had been a system speciÞcation, which models should you have
constructed? The eskimo or the indian head? Formalization indicates areas of ambiguity
and omissions in the system speciÞcation. Developers address ambiguities and omissions
by eliciting more information from the users and the client. Requirements elicitation and
requirements analysis are iterative and incremental activities.

Requirements analysis focuses on producing a model of the system (hereafter the analysis
model) that is correct, complete, consistent, and veriÞable. Requirements analysis is
different from requirements elicitation in that developers focus on structuring and
formalizing the information gathered from users (Figure 82). Although the analysis model
may not be not be understandable to the users and the client, it helps the developers to
verify the consistency and completeness of the requirements. Requirements elicitation and

FIGURE 80.

Ambiguity: what is this?

Introduction: an optical illusion

 DRAFT - DO NOT DISTRIBUTE

Requirements Analysis

3

 of

44

analysis are often conducted iteratively and incrementally, enabling developers to gather
more information from the users in case omissions or ambiguities are found.

There is a natural tendency from users and developers to postpone difÞcult decisions until
later in the project. A decision may be difÞcult because of lack of domain knowledge, lack of
technological knowledge, or simply because of disagreements among users and developers.
Postponing decisions enables the project to move on smoothly and avoid confrontation with
reality or among peers. Unfortunately, difÞcult decisions will need to be made eventually,
often at higher cost once the development of the system has started and intrinsic problems
are discovered during testing, or worse, during user evaluation. Translating a system
speciÞcation into a formal (or semi-formal) model forces difÞcult issues to be identiÞed and
resolved early in the process.

In the previous chapter, we described how to elicit requirements from the users and describe
them as use cases and scenarios using UML notations. In this chapter, we describe how to
identify objects from use cases, identify their behavior with sequence diagrams, model their
associations with class diagrams, and their individual behavior with state charts
(Section 7.3). The object model produced during requirements analysis constitutes the
analysis model. The class diagrams, sequence diagrams, and statechart diagrams constitute

FIGURE 81.

Eskimo and indian analysis models of drawing Figure 80.

Cave

lighting

entrance

enter()

leave()

Eskimo

size

dress()

smile()

sleep()

Shoe

size

color

type

wear()

Coat

size

color

type

wear()

lives in

Indian

hair

dress()

smile()

sleep()

Face

nose

mouth

ear

smile()

close_eye()

Analysis models and views

DRAFT-DO NOT DISTRIBUTE

4

 of

 44

Requirements Analysis

different views of the analysis model (see Figure 83). We also survey other notations that are
used during requirements analysis (Section 7.3) and illustrate how to manage object-
oriented requirements analysis (Section 7.4).

7.2. Analysis models and views

In this section, we survey notations for building analysis models. We Þrst describe the
notations used throughout the book, UML sequence diagrams (Section 7.2.1) and UML
statechart diagrams (Section 7.2.2). Sequence diagrams describe a pattern of interactions
among a number of objects. Statecharts describe the behavior of a single object. In
Section 7.3, we discuss the process of transforming a set of use cases into an object model,
sequence diagrams and statecharts to describe its behavior and class diagrams to describe
its structure. The UML class diagram notation that we use to describe object models has
been introduced in Chapter 2,

Introduction to UML

.

Many other notations have been proposed and used, of which we describe dataßow
diagrams, decision methods, and Z to illustrate the broader range of perspectives. Dataßow

FIGURE 82.

Products of requirements elicitation and requirements analysis (UML
activity diagram).

Requirements
Analysis

Requirements
Elicitation

System
Design

analysis
model: Model

system
specification:

system
model: Model

Model

Analysis models and views

 DRAFT - DO NOT DISTRIBUTE

Requirements Analysis

5

 of

44

diagrams (Section 7.2.3) are still a popular notation used for in the development of data
processing systems. They were introduced in the Structured Analysis method by De Marco
[De Marco, 1978]. Dataßow diagrams depict a system in terms of data pipelines and data
processing stages. Decision tables (Section 7.2.4) are used to represent behavior that
depends on a complex combinations of several conditions. Decision tables are useful for
specifying state driven behavior precisely and provide a compact alternative to state
diagrams. Z schemas (Section 7.2.5) enable the analyst to specify a system using a formal
notation. This allows a system to be deÞned precisely without resorting to pseudo code or a
programming language. Formal speciÞcations tend to be compact and much more accurate
than traditional methods, at the cost of additional training and resources. In development
projects were the correct functioning of a system is critical (e.g., a railroad trafÞc control
system), such investment in resources is justiÞable.

7.2.1. UML sequence diagrams

Sequence diagrams describe a pattern of interactions among a set of objects. An object
interacts with another object by sending

messages

. The reception of a message by an object
triggers the execution of an operation which in turn may send messages to other objects.

FIGURE 83.

Class diagrams, sequence diagrams, and statechart diagrams are three
different views of the analysis model.

analysis
model:Model

statechart
diagram:View

sequence
diagram:View

class
diagram:View

Analysis models and views

DRAFT-DO NOT DISTRIBUTE

6

 of

 44

Requirements Analysis

Arguments

 may be passed along with a message and are bound to the parameters of the
executing operation.

For example, let us consider the case of a digital watch with two buttons (hereafter
2Bwatch). Setting the time on 2Bwatch requires the user to Þrst press both buttons
simultaneously, after which 2Bwatch enters the set time mode. In the set time mode,
2Bwatch blinks the number being changed (e.g., the hours, the minutes, or the seconds, day,
month, year). Initially, when the user enters the set time mode, the hours are blinking. If the
user presses the Þrst button, the next number will blink (e.g, if the hours are blinking and
the user presses the Þrst button, the hours will stop blinking and the minutes will start
blinking. If the user presses the second button, the blinking number will be incremented by
one unit. If the blinking number reaches the end of its range, it is reset to the beginning of its
range (e.g., assume the minutes are blinking and its current value is 59, its new value will be
set to 0 if the user presses the second button). The user exits the set time mode by pressing
both buttons simultaneously. Figure 84 depicts a sequence diagram for the case of a user
setting his 2Bwatch one minute ahead.

Each column represents an object that is participating in the interaction. The vertical axis
represents time (from top to bottom). Messages are shown by full arrows. Labels on full
arrows represent message names and arguments. Activations (i.e., executing methods) are
depicted by hollow rectangles.

Sequence diagrams are used to describe use cases (i.e., all possible interactions) and
scenarios (i.e., one possible interaction, as in Figure 84). Usually, sequence diagrams are
drawn for a prototypical case to discover new operations and missing attributes during the
design phase. When describing all possible interactions, sequence diagrams also provide
notations for conditionals and iterators. A condition on a message send is denoted by an
expression in brackets before the message name (see

op1

 and

op2

 in Figure 85). If the

UML deÞnitions related to sequence diagrams:

¥

Sequence diagram

 -

A diagram that shows object interactions arranged in time sequence. In
particular, it shows the objects participating in the interaction and the sequence of messages
exchanged. Unlike a collaboration diagram, a sequence diagram includes time sequences
but does not include object relationships. A sequence diagram can exist in a generic form
(describes all possible scenarios) and in an instance form (describes one actual scenario).
Sequence diagrams and collaboration diagrams express similar information, but show it in
different ways (É).

¥

Message

 - A communication between objects that conveys information with the expectation
that activity will ensue. The receipt of a message is normally considered an event.

¥

Argument

 - A speciÞc value corresponding to a parameter. Synonym: actual parameter.
Contrast: parameter.

Analysis models and views

 DRAFT - DO NOT DISTRIBUTE

Requirements Analysis

7

 of

44

expression is true, the message is sent. Repetitive invocation of a message is denoted by a

*

before the message name (see

op3

 in Figure 85)

7.2.2. UML statechart diagrams

A

statechart

 is a notation provided by UML to describe the sequence of states an object or
an interaction goes through in response to external events. Statecharts are extensions of the
traditional ßat state machines model. On the one hand, statecharts provide notations for
nesting states and state machines (i.e., a state can be described by a state machine). On the
other hand, statecharts provide notations for binding transitions with message sends and
conditions on objects. UML statecharts were inspired by HarelÕs statecharts [Harel, 1987]. A
statechart is equivalent to a traditional Mealy or Moore state machine.

A state is represented by a rounded rectangle. A transition is represented by stick arrows
relating two states. States are labeled with their name and are optionally expanded. A small

FIGURE 84.

Example of sequence diagrams: setting the time on 2Bwatch.

:2BwatchInput :2BwatchTime:2BwatchOwner :2BwatchDisplay

pressButtons1And2() blinkHours()

pressButton1() blinkMinutes()

pressButton2() incrementMinutes()

refresh()

pressButtons1And2() commitNewTime()

stopBlinking()

Analysis models and views

DRAFT-DO NOT DISTRIBUTE

8

 of

 44

Requirements Analysis

solid black circle indicates the initial state. A circle surrounding a small solid black circle
indicates a Þnal state.

FIGURE 85.

 Examples of conditions and iterators in sequence diagrams.

UML deÞnitions related to statechart diagrams:

¥

Statechart

-

a diagram that shows a state machine.

¥

State machine

 - A behavior that speciÞes the sequences of states that an object or an
interaction goes through during its life in response to events, together with its responses
and actions.

¥

State

 - A condition or situation during the life of an object during which it satisÞes some
condition, performs some activity, or waits for some event. Contrast: state [OMA].

¥

Transition

 - A relationship between two states indicating that an object in the Þrst state will
perform certain speciÞed actions and enter the second state when a speciÞed event occurs
and speciÞed conditions are satisÞed. On such a change of state the transition is said to Þre.

¥

Action

 - The speciÞcation of an executable statement that forms an abstraction of a
computational procedure. An action results in a change in the state of the model, and is
realized by sending a message to an object or modifying a value of an attribute.

a b c

[i >0] op1()

[i <=0] op2()

*op3()

Analysis models and views

 DRAFT - DO NOT DISTRIBUTE

Requirements Analysis

9

 of

44

For example, Figure 86 displays a statechart for the 2Bwatch example for which we
constructed a sequence diagram (see Figure 84). At the highest level of abstraction, 2Bwatch
has two states,

MeasureTime

 and

SetTime

. 2Bwatch changes states when the user presses
and releases both buttons simultaneously. When 2Bwatch is Þrst powered, it is in the

SetTime

 state. This is indicated by the small solid black circle which represents the initial
state. A Þnal state would have been depicted with a circle surrounding a small solid black
circle.

Transitions model changes of state triggered by external events, conditions, or time. For
example in Figure 86, there are three transitions: two are triggered by the

pressButton1And2

 event and the other one is triggered by the passage of time (

after

 2
minutes

). Transitions may have actions associated with them. For example in Figure 86,
2Bwatch beeps when the user correctly switches back to the

MeasureTime

 state. An action
can be realized by one or more operations.

The statechart diagram in Figure 86 does not represent the details of measuring or setting
the time. These details have been abstracted away from the toplevel statechart diagram and
can be modeled separately using either internal transitions or a nested statechart. Internal
transitions (Figure 87)are transitions that remain within a single state. They can also have
actions associated with them. Entry and exit are displayed as an internal transition given
that their actions do not depend on the originating and destination states.

Nested statecharts (Figure 88) can be used instead of internal transitions. In Figure 88, the
current number is modeled as nested states, while actions corresponding to modifying the
current number are still modeled using internal transitions. Note that each state could be
modeled as a nested statechart (e.g., the

BlinkHour

 statechart would have twenty four sub

FIGURE 86.

Statechart diagram for

2Bwatch

 set time function.

MeasureTime SetTime

pressButtons1And2

pressButtons1And2/beep

after 2 min.

Analysis models and views

DRAFT-DO NOT DISTRIBUTE

10

 of

 44

Requirements Analysis

states which correspond to the hours in the day, transitions between these states would
correspond to pressing the second button).

7.2.3. Dataßow diagrams

The Structured Analysis method, developed by De Marco [De Marco, 1978], is a
requirements analysis method most useful for data processing applications. The system is
described as a set of data ßows and processes that create, transform, store, or consume data.
This method has been widely used and successful at taming the complexity of large

FIGURE 87.

Internal transitions associated with the

SetTime state.

FIGURE 88. ReÞned statechart associated with the SetTime state.

SetTime

entry/blink hours

exit/stop blinking

pressButton1/blink next number
pressButton2/increment current number

SetTime

BlinkHours BlinkMinutes BlinkSeconds

BlinkYear BlinkMonth BlinkDay

b2/incr hour b2/incr min. b2/incr sec.

b2/incr year b2/incr mo. b2/incr day

b1

b1

b1

b1

b1b1

Analysis models and views DRAFT - DO NOT DISTRIBUTE

Requirements Analysis 11 of 44

systems. Data ßow diagrams, the principal notation used in Structured Analysis, have been
used in other methods and form the basis for UML activity diagrams (see Chapter 2,
Introduction to UML). We do not use the data ßow notation in this book. We present,
however, the original data ßow notation here, given its popularity and legacy.

The basic elements of data ßow diagrams are:

¥ data ßows, denoted by arrows,
¥ processes, denoted by circles,
¥ Þles, denoted by horizontal lines, and
¥ data sources and sinks, denoted by boxes.

Figure 89 is an example of data ßow diagram for the SatWatch described in Section 6.1. GFS
is a data source. WatchOwner is a data sink. Inquire Location, Determine Time Zone,
and Compute Local Time are processes. Time Zone Table and GMT Time are Þles.

Data ßow diagrams are hierarchical. Each process can be described in turn by a data ßow
diagram, enabling a top down presentation of the system. At the lowest level of detail, each
process, Þle, data source, data sink, and data ßow is described in natural language.

FIGURE 89. Data ßow diagram for SatWatch. The watch receives its current location
from GPS, compute its time zone from internal tables, computes the local
time from the GMT time, and displays the local time for the user to read.

Compute
Local Time

Inquire
Location WatchOwner

GPS GMT Time

Determine
Time Zone

Time Zone Table

Analysis models and views DRAFT-DO NOT DISTRIBUTE

12 of 44 Requirements Analysis

7.2.4. Decision tables

A decision table [De Marco, 1978] is a convenient notation for expressing decisions that
depend on a complex or large number of conditions. Consider for example the rules that
determine the number of days in a month. January, March, May, July, August, October, and
December have 31 days. April, June, September, and November have 30 days. The number
of days in February depends on the year: in leap years, February has 29 days, and in non
leap years, 28. A year is leap if it is divisible by 4. If a year is a century, it is not a leap year,
unless it is divisible by 400. Is February 29, 2000 a legitimate date?

Figure 90 depicts the corresponding decision table. The upper left cells of the table represent
the conditions of interest. The upper right cells represent all legal values of the individual
conditions. Note for example, that all values of the leap year conditions have been omitted
for all months except for February. The lower left cells of the table contain the actions of
interest. In this rather artiÞcial example, we examine only a single action, Compute the
number of days in a month. The lower right cells describe the result of the action given
each set of values. A column regrouping a set of values and a result is called a rule.

A decision table makes it easier to select a rule given a set of conditions and compute an
action. (e.g., February 2000 correspond to the last rule). Decision tables can be used to
specify a range of behaviors, including processes in a data ßow diagram, operations in an
object model, the behavior of a digital circuit, or the number of days of a given month.

7.2.5. Z schemas

Z ([Spivey, 1989] and [Wordsworth, 1992]) is a notation for developing formal speciÞcations.
Formal speciÞcations use mathematical symbols and rules to describe a system precisely
such that its properties can be inferred and theorems about them proven. A Z speciÞcation is

FIGURE 90. Decision table for determining the number of days given a month and a
year.

Month is 1, 3, 5, 7, 8, 10, or 12
Month is 4, 6, 9, or 11
Month is 2
Year is divisible by 4
Year is divisible by 100
Year is divisible by 400

N
N
Y

Y
N
N

N
Y
N

N
N
Y

N
N
Y

N
N
Y

N
N
N

Y
N
N

Y
Y
N

Y
Y
Y

31 30 28 29 28 29Compute number of days of month

Conditions

Action

Rules

Analysis models and views DRAFT - DO NOT DISTRIBUTE

Requirements Analysis 13 of 44

a sequence of formal schemas interleaved with informal text. Schemas are used to describe
invariants on the state of the system and the operations on the state. Figure 91 is a small
speciÞcation describing a birthday book.

The BirthdayBook schema describes the state: a birthday book is a map from a set of names to
a set of dates. The domain of the map is called the known set of persons.

The AddBirthday schema describes the operation AddBirthday in terms of the state before
and after the operation. The declaration DBirthdayBook is equivalent to the declaration of
four variables: birthday represents the map of users to birthdays before the new name is
added, birthdayÕ represents the map after the addition. Similarly, known and knownÕ represent
the set of known names before and after the operation. name? and date? are input parameters
to the function. The expression The expression name? ‰ known is a precondition: the
operation is executed only when the name is not in the known set of persons. The behavior

FIGURE 91. Z speciÞcation for a birthday book (adapted from [Spivey, 1989])

A birthday book consists of records peoples birthday. People are recorded by their
name.

The AddBirthday operation adds a new birthday to the book given a new name and
a date. If the name is not already in the book, it is recorded with the speciÞed date.

The Remind operation generates a set of names corresponding to the poeple whose
birthday match the speciÞed date.

BirthdayBook
known : P NAME
birthday : NAME ßDATE

known = dom birthday

AddBirthday
DBirthdayBook
name? : NAME
date? : DATE

name? ‰ known
birthdayÕ = birthday U { name? å date? }

Remind
XBirthdayBook
today? : DATE
cards! : P NAME

cards! = { n : known | birthday(n) = today? }

From use cases to objects DRAFT-DO NOT DISTRIBUTE

14 of 44 Requirements Analysis

of the system in the case where name is already known is speciÞed by another schema not
shown here.

The Remind schema describes the operation Remind. Unlike AddBirthday, Remind does not
modify the state of the birthday book. The declaration XBirthdayBook is equivalent to the
declaration DBirthdayBook and the two additional conditions: known = knownÕ and
birthday = birthdayÕ. Also, the Remind operation returns its results in the form of a set called
cards!

7.3. From use cases to objects

The analysis model consists of entity, interface, and control objects [Objectory, 1993]. Entity
objects represent the persistent information tracked by the system. Interface objects
represent the interactions between the actors and the system.Control objects represent the
tasks that are performed by the user and supported by the system. In the 2Bwatch example,
Button_Interface and LCDDisplay_Interface are interface objects,
ChangeDate_Control is a control object that represents the process of changing the date by
pressing combinations of buttons. Year, Month, Day are entity objects.1

Modeling the system using these three types of objects has several advantages. First, it
provides developers with simple heuristics to distinguish similar, but different, concepts.
For example, the time that is tracked by a watch has different properties that the display that
depicts the time. Differentiating between interface and entity objects forces that distinction:
the time that is tracked by the watch is represented by the Time object. The display is
represented by the LCDDisplay_Interface. Second, the three object type approach results
into smaller and more specialized objects. Third, the three object type approach leads to
models that are more resilient to change: the interface to the system (represented by the
interface objects) is more likely to change than its basic functionality (represented by the
entity and control objects).

In this section, we describe how to construct an analysis model from the scenarios and use
cases produced during requirements elicitation. Section 7.3.1 describes how to Þnd entity
objects. Section 7.3.2 describes how to represent system interfaces with interface objects.
Section 7.3.3 describes control objects. Section 7.3.4 describes how to map use cases to the
objects we identiÞed and how to Þnd missing objects. Section 7.3.5 focuses on the

1. To distinguish between different types of objects, UML provides the stereotype mechanism to enable the
developer to attach such meta information to modeling elements. For example, the ChangeDate class
would be stereotyped with <<control>>. We prefer to use naming conventions for clarity and
recommend to distinguish the three different types of objects on a syntactical basis: Interface objects have
the sufÞx _Interface appended to their name; control objects have the sufÞx _Control appended to
their name; entity objects do not have any sufÞx appended to their name.

From use cases to objects DRAFT - DO NOT DISTRIBUTE

Requirements Analysis 15 of 44

identiÞcation of associations among the objects. Section 7.3.6 focuses on the identiÞcation of
object attributes. Section 7.3.8 describes how to model the behavior of individual objects
with statecharts. Section 7.3.9 describes the elimination of redundancy by using
generalization relationships. Section 7.3.10 discusses the activities that need to be performed
when reviewing the analysis model. We illustrate each activity by focusing on the
ReportEmergency use case example described in Chapter 6, Requirements Elicitation. These
activities are mostly guided by heuristics. The quality of their outcome depends on the
experience of the developer in applying these heuristics and methods. We adapted the
methods and heuristics presented in this section from [Objectory, 1993], [Rumbaugh et al.,
1991], [Booch, 1994], and [Wirfs-Brock et al., 1990].

7.3.1. Identifying entity objects

Participating objects (see Section 6.2.6) form the basis of the analysis model. As described in
Chapter 6, Requirements Elicitation, participating objects are found by examining each use
case and identifying candidate objects. Natural language analysis is an intuitive set of
heuristics for identifying objects, attributes, and associations from a system speciÞcation.
AbbottÕs heuristics maps parts of speech (e.g., nouns, having verbs, being verbs, adjectives)
to model components (e.g., objects, operations, inheritance relationships, classes). Table 29
provides examples of such mappings by examining the ReportEmergency use case
Figure 93.

Natural language analysis has the advantage of putting the focus on the usersÕ terms.
However, it suffers from several limitations. First, the quality of the object model depends
highly on the style of writing of the analyst (e.g., consistency of terms used, verbiÞcation of
nouns). Natural language is an imprecise tool and an object model derived literally from
text risk to be equally as imprecise. This limitation can be addressed by rephrasing and

FIGURE 92. Analysis classes for the 2Bwatch example.

Day

Year

Month

Button_Interface

LCDDisplay_Interface

ChangeDate_Control

From use cases to objects DRAFT-DO NOT DISTRIBUTE

16 of 44 Requirements Analysis

clarifying the system speciÞcation as objects are identiÞed and terms standardized. A
second limitation of natural language analysis is that there are many more nouns than
relevant classes. Many nouns correspond to attributes or synonyms for other nouns. Sorting
through all the nouns for a large system speciÞcation is a time consuming activity. In
general, AbbottÕs rules work well for generating a list of initial candidate objects from short
descriptions, such as a scenario or a use case. The following heuristics can be used in
conjunction with AbbottÕs rules:

Developers name and brießy describe the objects, their attributes, and their responsibilities
as they are identiÞed. Uniquely naming objects promotes a standard terminology.
Describing objects, even brießy, allows developers to clarify the concepts they are using and
avoid misunderstandings (e.g., using one object for two different but related concepts).
Developers need not, however, spend a lot of time detailing objects or attributes given that
the analysis model is still in ßux. Developers should document attributes and
responsibilities if they are obvious. A tentative name and a brief description for each object
is sufÞcient otherwise. There will be plenty of iterations during which objects can be revised.

Table 29 AbbottÕs heuristics for mapping parts of speech
to model components [Abbott, 1983]

Part of speech Model component Examples

Proper noun Object Alice

Improper noun Class FieldOfÞcer

Doing verb Operation creates, submits, selects

Being verb Inheritance is a kind of

Having verb Aggregation has, consists of, includes

Modal verb Constraints Must be

Adjective Attribute incident description

Heuristics for identifying entity objects:

¥ Terms that developers or users need to clarify in order to understand the use case,
¥ Recurring nouns in the use cases (e.g., Incident),
¥ Real world entities that the system needs to keep track of (e.g., FieldOfficer,

Dispatcher, Resource),
¥ Real world processes and procedures that the system needs to keep track of (e.g.,

EmergencyOperationsPlan),
¥ Use cases (e.g., ReportEmergency),
¥ Data sources or sinks (e.g., Printer),
¥ Always use the userÕs terms.

From use cases to objects DRAFT - DO NOT DISTRIBUTE

Requirements Analysis 17 of 44

However, the description of each object should be as detailed as necessary once the analysis
model is Þnalized (see Section 7.3.10).

For example, after a Þrst examination of the ReportEmergency use case (Figure 93), we
identify the objects Dispatcher, EmergencyReport, FieldOfficer, and Incident.

The deÞnition of these objects leads to the initial analysis model described in Table 30

Note that the EmergencyReport object is not mentioned explicitly by name in the
ReportEmergency use case. Step 3. of the use case refers to the emergency report as the
Òinformation submitted by the FieldOfficer.Ó After review with the client, we discover
that this information is usually referred to as the emergency report and decide to name the
corresponding object EmergencyReport.

Use case name ReportEmergency

Entry condition 1. The FieldOfficer activates the ÒReport EmergencyÓ function of
her terminal.

Description 2. FRIEND responds by presenting a form to the ofÞcer. The form
includes an emergency type menu (General emergency, Þre,
transportation), a location, incident description, resource request, and
hazardous material Þelds.

3. The FieldOfficer Þlls the form, by specifying minimally the
emergency type and description Þelds. The FieldOfficer may
also describes possible responses to the emergency situation and
request speciÞc resources. Once the form is completed, the
FieldOfficer submits the form by pressing the ÒSend ReportÓ
button, at which point, the Dispatcher is notiÞed.

4. The Dispatcher reviews the information submitted by the
FieldOfficer and creates an Incident in the database by
invoking the OpenIncident use case. All the information contained
in the FieldOfficerÕs form is automatically included in the
incident. The Dispatcher selects a response by allocating resources
to the incident (with the AllocateResource use case) and
acknowledges the emergency report by sending a FRIENDgram to the
FieldOfficer.

Exit condition 5. The FieldOfficer receives the acknowledgment and the selected
response.

FIGURE 93. An example of use case: ReportEmergency.

From use cases to objects DRAFT-DO NOT DISTRIBUTE

18 of 44 Requirements Analysis

Note that the above object model is far from being a complete description of the system
implementing the ReportEmergency use case. In the next section, we describe the
identiÞcation interface objects.

7.3.2. Identifying interface objects

Interface objects model the system interface with the actors. In each use case, each actor
interacts at least through one interface object. The interface object collects the information
from the actor and translates it into an interface neutral form that can be used by the control
and entity objects.

Interface objects model the user interface at a coarse level. They need not describe in detail
the visual aspects of the user interface. First, developers can do this more easily with user
interface sketches and mock-ups. Second, the design of the user interface design will
continue to evolve even after the functional speciÞcation of the system becomes stable.

Table 30 Entity objects for the ReportEmergency use case

Dispatcher Police ofÞcer who manages Incidents. A dispatcher opens, documents,
and closes incidents, in response to emergency reports and other
communication with FieldOfÞcers. Dispatchers are identiÞed by badge
numbers.

EmergencyReport Initial report about an Incident from a FieldOfÞcer to a Dispatcher. An
EmergencyReport usually triggers the creation of an Incident by the
Dispatcher. An EmergencyReport is composed of a emergency level, a
type (Þre, road accident, or other), a location, and a description.

FieldOfficer Police or Þre ofÞcer on duty. A FieldOfÞcer can be allocated to at most
one Incident. FieldOfÞcers are identiÞed by badge numbers.

Incident situation requiring attention from a FieldOfÞcer. An Incident may be
reported in the system by a FieldOfÞcer or anybody else external to the
system. An Incident is composed of a description, a response, a status
(open, closed, documented), a location, and a number of FieldOfÞcers.

From use cases to objects DRAFT - DO NOT DISTRIBUTE

Requirements Analysis 19 of 44

Updating the analysis model every time a visual change is made to the interface is time
consuming and does not yield any substantial beneÞt.

We Þnd the following interface objects by examining the ReportEmergency use case (see
Table 31).

Note that the Incident_Interface is not explicitly mentioned anywhere in the
ReportEmergency use case. We identiÞed this object by observing that the Dispatcher
needs an interface both to view the emergency report submitted by the FieldOfficer and

Heuristics for identifying interface objects:

¥ Identify forms and windows the users needs to enter data into the system (e.g.,
EmergencyReport_Interface, ReportEmergencyButton_Interface),

¥ Identify notices and messages the system uses to respond to the user (e.g.,
Acknowledgment_Interface),

¥ Do not model the visual aspects of the interface with interface objects (user mock-ups are better
suited for that),

¥ Always use the userÕs terms for describing interfaces, not the terms from the implementation
technology.

Table 31 Interface objects for the ReportEmergency use case

Acknowledgment_Interface Notice used for displaying the DispatcherÕs
acknowledgment to the FieldOfficer.

DispatcherStation_Interface Computer used by the Dispatcher.

EmergencyButton_Interface Button used by a FieldOfficer to initiate the
ReportEmergency use case.

EmergencyReport_Interface Form used for the input of the EmergencyReport.
This form is presented to the FieldOfficer on the
FieldOfficerStation_Interface when the
ÒReport EmergencyÓ function is selected. The
EmergencyReport_Interface contains Þelds
for specifying all attributes of an emergency report and
a button (or other control) for submitting the form
once it is completed.

FieldOfficerStation_Interface Portable computer used by the FieldOfficer.

Incident_Interface Form used for the creation of Incidents. This form is
presented to the Dispatcher on the
DispatcherStation_Interface when the
EmergencyReport is received. The Dispatcher
also uses this form to allocate resources and to
acknowledge the FieldOfficerÕs report.

From use cases to objects DRAFT-DO NOT DISTRIBUTE

20 of 44 Requirements Analysis

to send back an acknowledgment. The terms used for describing the interface objects in the
analysis model should follow the user terminology, even if it is tempting to use terms from
the implementation domain.

We have made progress towards describing the system. We now have included the interface
between the actor and the system. We are, however, still missing some signiÞcant pieces of
the description, such as the order in which the interactions between the actors and the
system occur. In the next section, we describe the identiÞcation of control objects.

7.3.3. Identifying control objects

Control objects are responsible for coordinating interface and entity objects. There is often a
close relationship between a use case and a control object. A control object is usually created
at the beginning of a use case and ceases to exist at its end. It is responsible for collecting
information from the interface objects and dispatching it to entity objects. For example,
control objects describe the behavior associated with the sequencing of forms, undo and
history queues, and dispatching information in a distributed system.

Initially, we model the control ßow of the ReportEmergency use case with a control object
for each actor (Table 32).

The decision to model the control ßow of the ReportEmergency use case with two control
objects stems from the knowledge that the FieldOfficerStation_Interface and the
DispatcherStation_Interface are actually two subsystems communicating over an
asynchronous link. This decision could have been postponed until the system design
activity. On the other hand, making this concept visible in the analysis model allows us to
focus on such exception behavior as the loss of communication between both stations.

In modeling the ReportEmergency use case, we modeled the same functionality using
entity, interface, and control objects. By shifting from the event ßow perspective to a
structural perspective, we increased the level of detail of the description and selected
standard terms to refer to the main entities of the application domain and the system. In the

Heuristics for identifying control objects:

¥ Identify one control object per use case or more if the use case is complex and can be divided
into shorter ßows of events,

¥ Identify one control object per actor in the use case,
¥ The life span of a control object should be extent of the use case or the extent of a user session. If

it is difÞcult to identify the beginning and the end of a control object activation, the
corresponding use case may not have a well deÞne entry and exit condition.

From use cases to objects DRAFT - DO NOT DISTRIBUTE

Requirements Analysis 21 of 44

next section, we construct a sequence diagram using the ReportEmergency use case and the
objects we discovered to ensure the completeness of our model.

7.3.4. Modeling interactions between objects: sequence diagrams

A sequence diagram shows how the behavior of a use case (or of a scenario) is distributed
among its participating objects. Sequence diagrams are usually not a good medium for
communication with the user. They represent, however, another shift in perspective and
allow the developers to Þnd missing objects or grey areas in the system speciÞcation.

In this section, we model the sequence of interactions among objects needed to realize the
use case. Figures 94, 95, and 96 are sequence diagrams associated with the
ReportEmergency use case. The columns of a sequence diagram represent the objects which
participates in the use case. The left most column is the actor who initiates the use case.
Horizontal arrows across columns represent messages, or stimuli, which are sent from one
object to the other. For example, the Þrst arrow in Figure 94 represents the press message
sent by a FieldOfficer to an EmergencyReportButton. The receipt of a message triggers
the activation of an operation represented by a hollow rectangle from which other messages
may originate. In Figure 94, the operation triggered by the press message sends a create

Table 32 Control objects for the ReportEmergency use case

ReportEmergency_Control Manages the report emergency reporting function on the
FieldOfficerStation_Interface. This object is created
when the FieldOfficer selects the ÒReport EmergencyÓ
button. It then creates an EmergencyReport_Interface
and presents it to the FieldOfficer. Upon submission of the
form, this object then collects the information form the form,
creates an EmergencyReport, and forwards it to the
Dispatcher. The control object then waits for an
acknowledgment to come back from the
DispatcherStation_Interface. When the
acknowledgment is received, the
ReportEmergency_Control object creates an
Acknowledgment_Interface and displays it to the
FieldOfficer.

ManageEmergency_Control Manages the report emergency reporting function on the
DispatcherStation_Interface. This object is created
when an EmergencyReport is received. It then creates an
IncidentForm and displays it to the Dispatcher. Once the
Dispatcher has created an Incident, allocated
Resources, and submitted an acknowledgment, the
ManageEmergencyCtr object forwards the acknowledgment to
the FieldOfÞcerStation_Interface.

From use cases to objects DRAFT-DO NOT DISTRIBUTE

22 of 44 Requirements Analysis

message to the ReportEmergency_Control class. An operation can be thought of as a
service that the object provides to other objects.

In general the second column of a sequence diagram represents the interface object with
which the actor interacts to initiate the use case (e.g., EmergencyReportButton). The third
column is a control object which manages the rest of the use case (e.g.,
ReportEmergency_Control). From then on, the control object creates other interface objects
and may interact with other control objects as well (in this case, the
ManageEmergency_Control object).

Heuristics for drawing sequence diagrams:

¥ The Þrst column should correspond to the actor who initiated the use case,
¥ The second column should be an interface object (that the actor used to initiate the use case),
¥ The third column should be the control object that manages the rest of the use case,
¥ Control objects are created by interface objects initiating use cases,
¥ Interface objects are created by control objects,
¥ Entity objects are accessed by control and interface objects,
¥ Entity objects never access interface or control objects, this makes it easier to share entity objects

across use cases.

FIGURE 94. Sequence diagram for the ReportEmergency use case (initiation from the
FieldOfficerStation_Interface side).

 FieldOfficer
 Report

EmergencyButton
 ReportEmergency_Control ReportEmergency

Form
 Emergency

Report
 Manage

Emergency_Control

press()

create()
create()

submit()

fillContents()

submitReport()
create()

submitReportToDispatcher()

From use cases to objects DRAFT - DO NOT DISTRIBUTE

Requirements Analysis 23 of 44

In Figure 95, we discover the entity object Acknowledgment that we forgot during our initial
examination of the ReportEmergency use case. Acknowledgment is different from an
Acknowledgment_Interface: it holds the information associated with an
Acknowledgment and it pre-exists the Acknowledgment_Interface interface object. When
describing the Acknowledgment object, we also realize that the original ReportEmergency
use case is incomplete. It only mentions the existence of an Acknowledgment and does not
describe the information associated with it. In this case, developers need clariÞcation from
the client to deÞne what information needs to appear in the Acknowledgment. After
obtaining such clariÞcation, the Acknowledgment object is added to the analysis model and
the ReportEmergency use case is clariÞed to include the additional information.

By constructing sequence diagrams we not only model the order of the interaction among
the objects, we also distribute the behavior of the use case. In other terms, we assign to each
object responsibilities in the form of a set of operations. These operations can be shared by
any use case in which a given object participates. Note that the deÞnition of an object that is
shared across two or more use cases should be identical. In other terms, if an operation
appears in more than one sequence diagram, its behavior should be the same.

Sharing operations across use cases allows developers to remove redundancies in the
system speciÞcation and to improve its consistency. Note that clarity should always be

FIGURE 95. Sequence diagram for the ReportEmergency use case
(DispatcherStation_Interface).

 Manage
Emergency_Control

 IncidentForm Incident Acknowledgment
 Dispatcher

create()

createIncident()

create()

submit()

create()

submitReportToDispatcher() view()

From use cases to objects DRAFT-DO NOT DISTRIBUTE

24 of 44 Requirements Analysis

given precedence to eliminating redundancy. Fragmenting behavior across many operations
obfuscates the system speciÞcation.

In requirements analysis, sequence diagrams are used to help identify new participating
objects and missing behavior. They focus on high-level behavior, and thus, implementation
issues such as performance should not be addressed at this point. The architecture of the
system and the complete distribution of behavior across objects will be completed during
system design. Given that building interaction diagrams can be time consuming, developers
should focus on problematic or underspeciÞed functionality Þrst. Drawing interaction
diagrams for parts of the system which are simple or well deÞned is not be a good
investment of analysis resources.

7.3.5. Identifying associations

While sequence diagrams allow developers to represent interactions among objects over
time, class diagrams allow developers to describe the spatial connectivity of objects. We
described the UML class diagram notation in Chapter 2, Introduction to UML and used it
throughout the book to represent various project artifacts (e.g., processes, activities,
deliverables). In this section, we discuss the use of class diagrams for representing
associations among objects. In Section 7.3.5, we discuss the use of class diagrams for
representing object attributes.

An association shows a dependency between two or more classes. For example, a
FieldOfficer writes an EmergencyReport (see Figure 97). Identifying associations has
two advantages. First, it clariÞes the analysis model by making relationships between
objects explicit (e.g., an EmergencyReport can be created by a FieldOfficer or a

FIGURE 96. Sequence diagram for the ReportEmergency use case (acknowledgment on
the FieldOfficerStation_Interface).

 FieldOfficer
 ReportEmergency

_Control
 Acknowledgment

Notice
 Manage

Emergency_Control

create
view

acknowledgeReport()

From use cases to objects DRAFT - DO NOT DISTRIBUTE

Requirements Analysis 25 of 44

Dispatcher). Second, it enables the developer to discover boundary cases associated with
links (e.g., an EmergencyReport is created by exactly one FieldOfficer or Dispatcher).

Associations have several properties:

¥ a name, to describe the association between the two classes (e.g., Writes in
Figure 97). Association names are optional and need not be unique globally.

¥ a role at each end, identifying the function of each class with respect to the
associations (e.g., author is the role played by FieldOfficer in the Writes
association).

¥ a cardinality at each end, identifying the possible number of instances (e.g., *
indicates a FieldOfficer may write zero or more EmergencyReports, whereas 1
indicates that each EmergencyReport has exactly one FieldOfficer as author.

Initially, the associations between entity objects are the most important, as they reveal more
information about the application domain. According to AbbottÕs heuristics (see Table 29),
associations can be identiÞed by examining verbs and verb phrases denoting a state (e.g.,
has, is part of, manages, reports to, is triggered by, is contained in, talks to, includes). Every
association should be named and roles assigned to each end. Association names need not be
unique.

The object model will initially include too many associations if developers include all
associations identiÞed after examining verb phrases. In Figure 98, for example, we

FIGURE 97. An example of association between the EmergencyReport and the
FieldOfficer classes.

Heuristics for identifying associations:

¥ Examine verb phrases,
¥ Name associations and roles precisely,
¥ Use qualiÞers as often as possible to identify namespaces and key attributes,
¥ Eliminate any association that can be derived from other associations,
¥ Do not worry about multiplicity until the set of associations is stable.

FieldOfficer EmergencyReport
* 1

Writes

author document

From use cases to objects DRAFT-DO NOT DISTRIBUTE

26 of 44 Requirements Analysis

identiÞed a relationship between an Incident and the EmergencyReport that triggered its
creation, and the Incident and the reporting FieldOfficer. Given the EmergencyReport
and FieldOfficer already have an association modeling authorship, the association
between Incident and FieldOfficer is not necessary.

Most entity objects have an identifying characteristic used by the actors to access them.
FieldOfficers and Dispatchers have a badge number. Incidents and Reports are
assigned numbers and are archived by date. Once the analysis model includes most classes
and associations, the developers should go through each class and check how it is identiÞed
by the actors and in which context. For example, are FieldOfficer badge numbers unique
across the universe? Across a city? A police station? If they are unique across cities, can the
FRIEND system know about FieldOfficers from more than one city? This approach can
be formalized by examining each individual class and identifying the sequence of
associations that need to be traversed to access a speciÞc instance of that class.

7.3.6. Identifying attributes

Attributes are properties of individual objects. For example, an EmergencyReport, as
described in Table 30, has an emergency type, a location, and a description property (see
Figure 99). These are entered by a FieldOfficer when she reports an emergency and are
subsequently tracked by the system. When identifying properties of objects, only the
attributes relevant to the system should be considered. For example, every FieldOfficer
have a social security number which is not relevant to the emergency information system.

FIGURE 98. Eliminating redundant association. The receipt of an EmergencyReport
triggers the creation of an Incident by a Dispatcher. Given that the
EmergencyReport has an association with the FieldOfficer that wrote it,
it is not necessary to keep an association between FieldOfficer and
Incident.

FieldOfficer EmergencyReport
* 1Writes

author document

Incident

1

11

1

TriggersReports

From use cases to objects DRAFT - DO NOT DISTRIBUTE

Requirements Analysis 27 of 44

Instead, FieldOfficers are identiÞed by badge number, represented by the badgeNumber
property.

Properties that are represented by objects are not attributes. For example, every
EmergencyReport has an author represented by an association to the FieldOfficer class.
Developers should identify as many associations as possible before identifying attributes to
avoid confusing attributes and objects.

Attributes minimally have:

¥ a name identifying them within an object. For example, an EmergencyReport may
have a reportType attribute and an emergencyType attribute. The reportType
describes the kind of report being Þled (e.g., initial report, request for resource, Þnal
report). The emergencyType describes the type of emergency (e.g., Þre, trafÞc, other).
These attributes should not be both called type to avoid confusion,

¥ a brief description,
¥ a type describing the legal values it can take. For example, the description attribute

of an EmergencyReport is a string. The emergencyType attribute is an enumeration
which can take one of three values: fire, traffic, other.

Attributes can be identiÞed using Abbotts heuristics (see Table 29). In particular, noun
phrases followed by a possessive phrases (e.g., the description of an emergency) or an
adjective phrase (e.g., the emergency description) should be examined. In the case of entity
objects, any property that needs to be stored by the system is a candidate attribute.

Note that attributes represent the least stable part of the object model. Often, attributes are
discovered or added late in the development when the system is evaluated by the users.
Unless the added attributes are associated with additional functionality, the added
attributes do not entail major changes in the object (and system) structure. For these reasons,
the developers need not spend excessive resources in identifying and detailing attributes

FIGURE 99. Attributes of the EmergencyReport class.

EmergencyReport

emergencyType:(fire,traffic,other)
location:String
description:String

From use cases to objects DRAFT-DO NOT DISTRIBUTE

28 of 44 Requirements Analysis

representing less important aspects of the system. These attributes can be added later when
the analysis model or the user interface sketches are validated.

7.3.7. Identifying qualiÞers

A qualiÞed association relates two classes and a qualiÞer. A qualiÞer is an attribute of the
association that partitions the targets of the association into exclusive subsets. For example,
consider a hierarchical Þle system in which each Þle belongs to exactly one directory.
Assume that each Þle is uniquely identiÞed by a name in the context of a directory. In
Figure 100, the top class diagram represents the association between Directory and the
File without qualiÞcation. The bottom diagram represents the same association with a
qualiÞer, Þlename. The addition of the qualiÞer and the 1 multiplicity on the left side
indicate that the filename uniquely identiÞes the File in a given Directory. The 0É1
multiplicity on the right side indicates that, given a legitimate Þlename, there may or may
not be a Þle associated with it.

Adding qualiÞers usually reduces the multiplicity of the association and adds information
to the model. Developers should examine each association that has a one to many or many

Heuristics for identifying attributes:a

a. Adapted from [Rumbaugh et al., 1991].

¥ Examine possessive phrases.
¥ Represent stored state as attributes of entity object.
¥ Describe each attribute.
¥ Do not represent identiÞers (e.g., names) as attributes, use qualiÞers instead (see Section 7.3.5).
¥ Do not represent an attribute as an object, use an association instead (see Section 7.3.5).
¥ Do not waste time describing Þne details before the object structure is stable.

FIGURE 100.Example of qualiÞed association.

Directory Filefilename

Directory
File

filename

1
Without qualification

With qualification

*

0É11

From use cases to objects DRAFT - DO NOT DISTRIBUTE

Requirements Analysis 29 of 44

to many multiplicity and check if a qualiÞer is missing. Often, these associations can be
qualiÞed with an attribute of the target class, (e.g., the filename attribute in Figure 100).

Identifying qualiÞers and searching for identifying attributes can reveal missing classes.
Usually, objects are identiÞed by a name or an attribute in some context. Names are rarely
unique globally. For example, a FieldOfficer is identiÞed by badge number in the context
of a City. City is a new class with an association to FieldOfficer qualiÞed by the badge
number of a FieldOfficer (see Figure 101).

7.3.8. Modeling the non trivial behavior of individual objects

Sequence diagrams (see Sections 7.2.1 and 7.3.4) are used to distribute behavior across
objects and identifying operations. Sequence diagrams represent the behavior of the system
from the perspective of a single use case. Statecharts (see Section 7.2.2) represent behavior
from the perspective of a single object. Viewing behavior from the perspective of each object
enables the developer, on the one hand, to identify missing use cases, and, on the other
hand, to build a more formal description of the behavior of the object. Note that it is not
necessary to build statecharts for every class in the system. Only the statecharts of objects
with an extended lifespan and with non trivial behavior are worth constructing.

Figure 102 displays a statechart for the Incident class. The examination of this statechart
may help the developer check if there are use cases for documenting, closing, and archiving
Incidents. Note that Figure 102 is a high level statechart and does not model the state
changes an Incident goes through while it is active (e.g., when resources are assigned to it).
Such behavior can be modeled by associating a nested statechart with the Active state.

7.3.9. Modeling generalization relationships between objects

Generalization is used to eliminate redundancy from the analysis model. If two or more
classes share attributes or behavior, the similarities are consolidated into a superclass. For
example, Dispatchers and FieldOfficers both have a badgeNumber attribute that serves
to identify them within a city. FieldOfficers and Dispatchers are both PoliceOfficers

FIGURE 101.An example of qualiÞed association. The City class was identiÞed when
examining identifying attributes of the FieldOfficer class.

City FieldOfficerbadgeNumber

From use cases to objects DRAFT-DO NOT DISTRIBUTE

30 of 44 Requirements Analysis

who are assigned different functions. To model explicitly this similarity, we introduce a
PoliceOfficer class from which the FieldOfficer and Dispatcher classes inherit (see
Figure 103).

7.3.10. Reviewing the analysis model

The analysis model is built incrementally and iteratively. The analysis model is seldom
correct or even complete on the Þrst pass. Several iterations with the client and the user are
necessary before the analysis model converges towards a correct speciÞcation usable by the
developers. For example, an omission discovered during requirements analysis will lead to
adding or extending a use case in the system speciÞcation which may lead to eliciting more
information from the user.

FIGURE 102.Statechart for Incident

FIGURE 103.An example of inheritance relationship

Active Inactive Closed Archived

numAllocatedResource == 0

all reports

when incident.date > 1yr.

are submitted

FieldOfficer Dispatcher

PoliceOfficer

badgeNumber:Integer

From use cases to objects DRAFT - DO NOT DISTRIBUTE

Requirements Analysis 31 of 44

Once the analysis model becomes stable (i.e., when the number of changes to the model are
minimal and the scope of the changes localized), the analysis model is reviewed, Þrst by the
developers (i.e., internal reviews), then jointly by the developers and the client. The review
can be facilitated by a check list or a list of questions. Below are example questions adapted
from [Objectory, 1993] and [Rumbaugh et al., 1991].

The following questions should be asked to ensure that the system is correct:

¥ Is the glossary of entity objects understandable by the user?
¥ Do abstract classes correspond to user level concepts?
¥ Are all descriptions in accordance with the users deÞnitions?
¥ Do all entity and interface objects have meaningful noun phrases as names?
¥ Do all use cases and control objects have meaningful verb phrases as names?
¥ Are all error cases described and handled?
¥ Are the start up and the shut down phases of the system described?
¥ Are the administration functions of the system described?

The following questions should be asked to ensure that the model is complete:

¥ For each object: Is it needed by any use case? In which use case is it created?
modiÞed? destroyed? Can it be accessed from an interface object?

¥ For each attribute: When is it set? What is its type? Should it be a qualiÞer?
¥ For each association: When is it traversed? Why was the speciÞc multiplicity chosen?

Can associations with one to many and many to many multiplicities be qualiÞed?
¥ For each control object: does it have the necessary associations to access the objects

participating in its corresponding use case?

The following questions should be asked to ensure that the model is consistent:

¥ Are there multiple classes or use cases with the same name?
¥ Do entities (e.g., use cases, classes, attributes) with similar names denote similar

phenomena?
¥ Are all entities described at the same level of detail?
¥ Are there objects with similar attributes and associations that are not in the same

generalization hierarchy?

The following questions should be asked to ensure that the system described by the analysis
model is realistic:

¥ Are there any novel features in the system? Were there any studies or prototypes
built to ensure there feasibility?

From use cases to objects DRAFT-DO NOT DISTRIBUTE

32 of 44 Requirements Analysis

¥ Can the performance and reliability requirements be met? Were these requirements
veriÞed by any prototypes running on the selected hardware?

7.3.11. Requirements analysis summary

The requirements process is highly iterative and incremental. Chunks of functionality are
sketched and proposed to the users and the client. The client adds additional requirements,
criticize existing functionality, and modiÞes existing requirements. The developers
investigate nonfunctional requirements through prototyping and technology studies and
challenge each pseudo requirement. Initially, requirements elicitation resembles a
brainstorming activity. As the description of the system grows and the requirements become
more concrete, developers need to extend and modify the analysis model in a more orderly
manner in order to manage the complexity of information.

Figure 104 depicts a typical sequence of the requirements analysis activities we described in
this chapter. The users, developers, and client are involved in the DeÞning use cases and
develop an initial use case model. They identify a number of concepts and built a glossary of
participating objects. The developers then classify these objects into entity, interface, and
control objects (in DeÞning entity objects, Section 7.3.1, DeÞning interface objects, Section 7.3.2,
and DeÞning control objects, Section 7.3.3). These activities occur in a tight loop until most of
the functionality of the system has been identiÞed as use cases with names and brief
descriptions. Then, the developers construct sequence diagrams to identify any missing
objects (DeÞning interactions, Section 7.3.4). Once all entity objects have been named and
brießy described, the analysis model should remain fairly stable as it is reÞned.

DeÞning interesting behavior (Section 7.3.8), DeÞning attributes (Section 7.3.6), and DeÞning
associations (Section 7.3.5) constitute the reÞnement of the analysis model. These three
activities represent a tight loop during which the state of the objects and their associations
are extracted from the sequence diagrams and detailed. The use cases are then modiÞed to
account for any changes in functionality. This phase may lead to the identiÞcation of an
additional chunk of functionality in the form of additional use cases. The overall process is
then repeated incrementally for these new use cases.

During Consolidating requirements (Section 7.3.7 and Section 7.3.9), the developers solidify
the model by introducing qualiÞers, generalization relationships, and suppressing
redundancies. During Reviewing requirements (Section 7.3.10), the client, users, and
developers examine the model for correctness, consistency, completeness, and realism. The
project schedule should plan for multiple reviews to ensure a high quality of the
requirements and allow space for learning the requirements process. However, once the
model reaches the point where most modiÞcations are cosmetic, system design should
proceed. There will be a point during requirements where no more problems can be
anticipated without further information from prototyping, usability studies, technology

Managing requirements DRAFT - DO NOT DISTRIBUTE

Requirements Analysis 33 of 44

surveys, or system design. Getting every detail right becomes a wasteful exercise: some of
these details will become irrelevant by the next change. Management should recognize this
point and initiate the next phase in the project.

7.4. Managing requirements

In this section we discuss issues related to managing the requirements analysis activities in
the context of a 40 person project such as PROSE. The primary challenge in managing the
requirements in such a project is to maintain consistency while using so many resources. In
the end, the requirements analysis document should describe a single coherent system
understandable to a single person.

We Þrst describe a document template that can be used to document the results of
requirements analysis (Section 7.4.1). Next, we describe the role assignment to requirements
analysis (Section 7.4.2). Next, we address communication issues during requirements
analysis. Next, we address management issues related to the iterative and incremental
nature of requirements (Section 7.4.4).

7.4.1. Documenting the requirements

The product of the requirements elicitation and requirements analysis activities is the
Requirements Analysis Document (RAD). It completely describes the system in terms of
functional and nonfunctional requirements and often serves as a contractual basis between
the client and the developers. The audience for the RAD includes the client, the users, the
project management, the system analysts (i.e., the developers who participate in the

Managing requirements DRAFT-DO NOT DISTRIBUTE

34 of 44 Requirements Analysis

FIGURE 104.Requirements analysis activities (UML activities diagram). As depicted in
this Þgure, requirements analysis is iterative and incremental.

Reviewing
requirements

Consolidating
requirements

Defining
entity objects

Defining
interface objects

Defining
control objects

Defining
interactions

Defining
associations

Defining
attributes

Defining
nontrivial
behavior

Defining
participating

Defining
use cases

objects

Managing requirements DRAFT - DO NOT DISTRIBUTE

Requirements Analysis 35 of 44

requirements) and the system designers (i.e., the developers who participate in the system
design). The following template is an example of RAD for PROSE:

The Þrst section of the RAD is an introduction. Its purpose is to provide a brief overview of
the function of the system and the reasons for its development, its scope, and references to
the development context (e.g., related problem statement, references to existing systems,

Requirements Analysis Document (RAD)

Revision history

1. Introduction
1.1 Purpose of the system
1.2 Scope of the system
1.3 Objectives and success criteria of the project
1.4 DeÞnitions, acronyms, and abbreviations
1.5 References
1.6 Overview

2. Current system

3. Proposed system
3.1 Overview
3.2 Functional requirements
3.3 Nonfunctional requirements

3.3.1 User interface and human factors
3.3.2 Documentation
3.3.3 Hardware consideration
3.3.4 Performance characteristics
3.3.5 Error handling and extreme conditions
3.3.6 System interfacing
3.3.7 Quality issues
3.3.8 System modiÞcations
3.3.9 Physical environment
3.3.10 Security issues
3.3.11 Resource issues

3.4 Pseudo requirements
3.5 System models

3.5.1 Scenarios
3.5.2 Use case model
3.5.3 Object model

3.5.3.1 Data dictionary
3.5.3.2 Class diagrams

3.5.4 Dynamic models
3.5.5 User interface - navigational paths and screen mock-ups

Appendixes

Index

Managing requirements DRAFT-DO NOT DISTRIBUTE

36 of 44 Requirements Analysis

feasibility studies). The introduction also includes the objectives and success criteria of the
project.

The second section, Current system, describes the current state of affairs. If the new system
will replace an existing system, this section describes the functionality and the problems of
the current system. Otherwise, this section describes how the tasks supported by the new
system are accomplished now. For example, in the case of SatWatch, the user currently resets
her watch whenever she travels across a time zone. Due to the manual nature of this
operation, the user occasionally sets the wrong time. The SatWatch will continually ensure
accurate time within its lifetime In the case of FRIEND, the current system is paper based:
dispatchers keep track of resource assignments by Þlling forms. Communication between
dispatchers and Þeld ofÞcers is radio-based. The current system entails a higher
documentation and management cost that the FRIEND system attempts to reduce.

The third section, Proposed system, documents the requirements elicitation and the
requirements analysis model of the new system. It is divided into Þve subsections:

¥ Overview presents a functional overview of the system.
¥ Functional requirements describes in natural language the high level functionality of

the system.
¥ Nonfunctional requirements describes user level requirements that are not directly

related to functionality. This includes performance, security, modiÞability, error
handling, hardware platform, physical environment.

¥ Pseudo requirements describes design constraints imposed by the client.
¥ System models describes the scenarios, use cases, object model, and dynamic models

we discussed in the previous sections. This section contains the complete functional
speciÞcation of the system, including mock-ups and navigational charts illustrating
the user interface of the system.

The RAD should be written after the analysis model is stable, that is, when the number of
modiÞcations to the requirements is minimal. The RAD, however, will be updated
throughout the process when speciÞcation problems are discovered or when the scope of
the system is changed. The RAD, once published, will be under conÞguration management.
The revision history section of the RAD will provide a history of changes as a list of author
responsible for the change, date of change, and brief description of the change.

7.4.2. Assigning responsibilities

Requirements analysis requires the participation of a wide range of individuals. The target
user provides application domain knowledge. The client funds the project and coordinates
the user side of the effort. The analyst elicits application domain knowledge and formalizes

Managing requirements DRAFT - DO NOT DISTRIBUTE

Requirements Analysis 37 of 44

it. Developers provide feedback on feasibility and cost. The project manager coordinates the
effort on the development side. For large systems, many users, analysis, and developers
may be involved, introducing additional challenges during for integration and
communication requirements of the project. These challenges can be met by assigning well
deÞned roles and scopes to individuals. There are three main types of roles: generation of
information, integration, and review.

¥ The user is the application domain expert. She generates information about the
current system, the environment of the future system and the tasks it should support.
Each user corresponds to one or more actors help identify their associated use cases.

¥ The client, an integration role, deÞnes the scope of the system based on user
requirements. Different users may have different views of the system, either because
they will beneÞt from different parts of the system (e.g., a dispatcher vs. a Þeld
ofÞcer) or because the users have different opinions or expectations about the future
system. The client serves as an integrator of application domain information and
resolves inconsistencies in user expectations.

¥ The analyst is the development domain expert. She models the current system and
generates information about the future system. Each analysis is initially responsible
for detailing one or more use cases. For a set of use cases, the analysis will identify a
number of objects, their associations, and their attributes using the techniques
outlined in Section 7.3.

¥ The architect, an integration role, uniÞes the use case and object models from a
system point of view. Different analysts may have different styles of modeling and
different views of the parts of the systems which they are not responsible for.
Although analysts work together and will most likely resolve differences as they
progress through requirements analysis, the role of the architect is necessary to
provide a system philosophy and identify omissions in the requirements.

¥ The document editor is responsible for the low level integration of the document. The
document editor is responsible for the formatting, index, and ensures the overall
terminology used in the document is consistent.

¥ The conÞguration manager is responsible for maintaining a revision history of the
document as well as traceability information relating the RAD with other documents
(such as the System Design Document, see Chapter 8, System Design).

¥ The reviewer validates the RAD for correctness, completeness, consistency, realism,
veriÞability, and traceability. Users, clients, developers, or other individuals may
become reviewers during requirements validation. Individuals that have not yet been
involved in the process represent excellent reviewers since they are more able to
identify ambiguities and areas that need clariÞcation.

The size of the system determines the number of different users and analysts that are
needed to elicit and model the requirements. In all cases, there should be one integrating

Managing requirements DRAFT-DO NOT DISTRIBUTE

38 of 44 Requirements Analysis

role on the client side and one on the development side. In the end, the requirements,
however large the system, should be understandable by a single individual knowledgeable
in the application domain.

7.4.3. Communicating about requirements analysis

The task of communicating information is most challenging during requirements elicitation
and requirements analysis. Contributing factors include:

¥ Different background of participants. users, clients, and developers have different
domains of expertise and use different vocabularies to describe the same concepts.

¥ Different expectations of stakeholders. users, clients, and managements have different
objectives when deÞning the system. Users want a system that supports their current
work processes, with no interference or threat to their current position (e.g., an
improved system often translates into the elimination of current positions). The client
wants to maximize return on investment. Management wants to deliver the system
on time. Different expectations and different stakes in the project can lead to a
reluctance to share information and to report problems in a timely manner.

¥ New teams. Requirements elicitation and requirements analysis often marks the
beginning of a new project. This translates into new participants and new team
assignments, and thus, into a ramp up period during which team members learn to
work together.

¥ Evolving system. When a new system is developed from scratch, terms and concepts
related to the new system are in ßux during most of the requirements analysis and
the system design. A term today may have a different meaning tomorrow.

No requirements method or communication mechanism can address problems related with
internal politics and information hiding. Conßicting objectives and competition will always
be part of large development projects. A few simple guidelines, however, can help in
managing the complexity of conßicting views of the system:

¥ DeÞne clear territories. DeÞning roles as described in Section 7.4.2 is part of this
process. This also includes the deÞnition of private and public discussion forums. For
example, each team may have a discussion bboard as described in Chapter 5, Project
Communication and discussion with the client is done on a separate client bboard. The
client should not have access to the internal bboards. Similarly, developers should
not interfere with client/user internal politics.

¥ DeÞne clear objectives and success criteria. The co-deÞnition of clear, measurable, and
veriÞable objectives and success criteria by both the client and the developers
facilitates the resolution of conßicts. Note that deÞning a clear and veriÞable
objective is a non trivial task, given that it is easier to leave objectives open ended.

Managing requirements DRAFT - DO NOT DISTRIBUTE

Requirements Analysis 39 of 44

The objectives and the success criteria of the project should be documented in section
1.3 of the RAD.

¥ Brainstorm. Putting all the stakeholders in the same room and have them generate
quickly solutions and deÞnitions can remove many barriers in the communication.
Conducting reviews as a reciprocal activity (i.e., reviewing deliverables from both the
client and the developers during the same session) has a similar effect.

Brainstorming, and more generally the cooperative development of requirements, can lead
to the deÞnition of shared, adhoc notations for supporting the communication. Storyboards,
user interface sketches, and high-level dataßow diagrams often appear spontaneously. As
the information about the application domain and the new system accrue, it is critical that a
precise and structured notation be used. In UML, developers employ use cases and
scenarios for communicating with the client and the users, object diagrams, sequence
diagrams, and statecharts to communicate with other developers (see Sections 6.2 and 7.3).
Moreover, the latest release of the requirements should be available to all participants.
Maintaining a live on-line version of the requirements analysis document with an up to date
change history facilitates the timely propagation of changes across the project.

7.4.4. Iterating over the analysis model

Requirements analysis occurs iteratively and incrementally, often in parallel with other
development processes such as system design and implementation. Note, however, that the
unrestricted modiÞcation and extension of the analysis model can only result in chaos,
especially when a large number of participants are involved. Iterations and increments need
to be carefully managed and requests for changes tracked.

Before any other development process is initiated, requirements elicitation is a
brainstorming process. Everything, concepts and the terms used to refer to them, changes.
The objective of a brainstorming process is to generate as many ideas as possible without
necessarily organizing them. During this stage, iterations are rapid and far reaching.

Once the client and the developers converge on a common idea, deÞned the boundaries of
the system, and agreed on a set of standard terms, requirements analysis starts.
Functionality is organized into groups of use cases with their corresponding interfaces.
Groups of functionality are allocated to different teams that are responsible for detailing
their corresponding use cases. During this stage, iterations are rapid but localized. Changes
at the higher level are still possible but are more difÞcult, and thus, made more carefully.
Each team is responsible for the use cases and object models related to the functionality they
have been assigned. A cross functional team, the architecture team, made of representative
of each team, is responsible for ensuring the integration of the requirements (e.g., naming).

Managing requirements DRAFT-DO NOT DISTRIBUTE

40 of 44 Requirements Analysis

Once the client signs off the requirements, modiÞcation to the requirements analysis model
should address omissions and errors. Developers, in particular the architecture team, need
to ensure that the consistency of the model is not compromised. The requirements model is
under conÞguration management and changes should be propagated to existing design
models. Iterations are slow and often localized.

The number of features and functions of a system will always increase with time. Each
change, however, can threaten the integrity of the system. The risk of introducing more
problems with late changes is due to the loss of information in the project. The dependencies
across functions are not all captured, many assumptions may be implicit and forgotten by
the time the change is made. Often, the change responds to a problem, in which case there is
a lot of pressure to implement it, resulting into only a superÞcial examination of the
consequence of the change. When new features and functions are added to the system, they
should be challenged with the following questions: Are they necessary or are they
embellishments? Were they requested by the client? Should they be part of a separate,
focused utility program instead of part of the base system? What are the impact of the
changes to existing functions in terms of consistency, interface, reliability?

When changes are necessary, the client and developer deÞne the scope of the change, its
desired outcome, and change the analysis model. Given that a complete analysis model
exists for the system, specifying new functionality is easier (although implementing it is
more difÞcult).

7.4.5. Client sign-off

The client sign-off represents the acceptance of the analysis model (as documented by the
requirements analysis document) by the client. The client and the developers converged on
a single idea and agreed about the functions and features that the system will have. In
addition, they agree on:

¥ a list of priorities,
¥ a revision process,
¥ a list of criteria that will be used to accept or reject the system, and
¥ a schedule, and a budget.

Prioritizing system functions allows the developers to understand better the clientÕs
expectations. In its simplest form, it allows developers to separate bells and whistles from
essential features of the system. In general, it allows developers to deliver the system in
incremental chunks: essential functions are delivered Þrst, additional chunks are delivered
depending on the evaluation of the Þrst chunk. Even if the system is to be delivered as a
single, complete package, prioritizing functions enables the client to clearly communicate

Managing requirements DRAFT - DO NOT DISTRIBUTE

Requirements Analysis 41 of 44

what is important to her and where the emphasis of the development should be. Figure 105
provides an example of priority scheme.

A revision process enables the client and developer to deÞne how changes in the
requirements are to be dealt after the sign-off. The requirements will change, either because
of errors, omissions, changes in the operating environment, changes in the application
domain, or changes in technology. DeÞning a revision process up front encourages changes
to be communicated across the project and reduces the number of surprises in the long term.
Note that a change process need not be bureaucratic or require excessive overhead. It can be
as simple as naming a person responsible for receiving change requests, approving changes,
and tracking their implementation. Figure 106 depicts a much more complex example in
which changes are designed and reviewed by the client before they are implemented in the
system. In all cases, acknowledging that requirements cannot be frozen will beneÞt the
project.

The list of acceptance criteria is revised at sign-off. The requirements elicitation and
requirements analysis process clariÞes many aspects of the system, including the
nonfunctional requirements with which the system should comply and the relative
importance of each function. By re-stating the acceptance criteria at sign-off, the client
ensures that the developers are updated about any changes in client expectations.

The budget and schedule are revisited after the analysis model becomes stable. We
described in Chapter 4, Project Management issues related to cost estimation.

Whether the client sign-off is a contractual agreement or whether the project is already
governed by a prior contract, the client sign-off is an important milestone in the project. It
represents the convergence of client and developer on a single functional deÞnition of the
system and a single set of expectations. The acceptance of the requirements analysis
document is more critical than any other document given that many activities depend on
the analysis model.

Each function shall be assigned one of the following priorities:
¥ High priority -A high priority feature must be demonstrated successfully during client acceptance.
¥ Medium priority - A medium priority feature must be taken into account in the system and detailed

designs. It will be implemented and demonstrated with the second increment of the system.
¥ Low priority - A low-priority feature illustrates how the system could be extended in the longer term.

FIGURE 105.Example of priority scheme for requirements.

Managing requirements DRAFT-DO NOT DISTRIBUTE

42 of 44 Requirements Analysis

FIGURE 106.Example of revision process (UML activity diagram).

Report problem
or

Design change
and

change request estimate impact

Update
requirements

Update
design

Update code
 (if applicable)

Design
test

Execute all
relevant tests

Archive
request

[changed approved]

Review proposed
change

Review actual
change

Client Developer

Exercises DRAFT - DO NOT DISTRIBUTE

Requirements Analysis 43 of 44

7.5. Exercises

1. Reverse engineering the SetTime use case for the 2Bwatch from the sequence
diagram of Figure 84.

2. Identify entity, control, and interface objects from this use case using the method
presented in this chapter. Include attributes and operations. Modify the use case if
you Þnd any ambiguity or inconsistency in this process.

3. The makers of 2Bwatch are now proposing an software upgrade that includes a timer
function. Write the use cases StartTimer, StopTimer, and ResetTimer. Remember
that 2Bwatch only has two buttons and that present functionality (i.e., SetTime)
needs to be supported.

4. Update the analysis model developed in Exercise 2. to reßect the additional
functionality described in Exercise 3. Were any of the original objects changed?

5. You need to communicate to the original developer the changes you made to the
analysis model in Exercise 4. How would you communicate document such changes?

7.6. References

[Abbott, 1983] R. Abbott, ÒProgram Design by Informal English Descriptions,Ó
Communications of the ACM, vol 26, no. 11, 1983.

[Booch, 1994] G. Booch, Object-Oriented Analysis and Design with Applications, Second
Edition, Benjamin/Cummings Publishing Company, Inc., Redwood City, CA, 1994.

[De Marco, 1978] T. De Marco, Structured Analysis and System SpeciÞcation, Yourdon Inc, New
York, 1978.

[FRIEND, 1994] FRIEND Project Documentation, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA 1992-95.

[Harel, 1987] D. Harel, ÿStatecharts: A Visual Formalism for Complex Systems,ÿ Science of
Computer Programming, pp. 231-274, 1987.

[Jacobson et al., 1992] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-
Oriented Software Engineering - A Use Case Driven Approach. Reading, MA, Addison-Wesley,
New York, 1992.

[Jackson, 1995] M. Jackson, Software Requirements & SpeciÞcations: a lexicon of practice,
principles and prejudices, ACM Press, Addison-Wesley, 1995.

[Objectory, 1993] Objectory 3.3, Objective Systems SF AB, Kista, Sweden, 1993.

[Rumbaugh et al., 1991] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
Object-Oriented Modeling and Design. Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 1991.

[Spivey, 1989] J. M. Spivey, The Z Notation, A Reference Manual. Prentice Hall International

References DRAFT-DO NOT DISTRIBUTE

44 of 44 Requirements Analysis

(UK) Ltd., Hemel Hempstead, Hertfordshire, U.K. 1989.

[Wirfs-Brock et al., 1990] R. Wirfs-Brock, B. Wilkerson, and Lauren Wiener. Designing Object-
Oriented Software, Prentice-Hall Englewood-Cliffs, NJ, 1990.

[Wordsworth, 1992] J.B. Wordsworth, Software Development with Z: a Practical Approach to
Formal Methods in Software Engineering, Addison-Wesley, 1992.

