

March 3, 1998

DRAFT - DO NOT DISTRIBUTE

6. Requirements

Elicitation

If you can't write it down in English, you can't code it.

- Peter Halpern

A

Requirement

 is a feature that the system must have or a constraint that it must satisfy to be
acceptable to the client. The

Requirements Process

is aimed at deÞning the requirements of the
system under construction. The Requirements Process can be viewed as two main activities,

Requirements Elicitation

, which results in the speciÞcation of the system that the customer
understands, and

Requirements Analysis

, which results into an analysis model that the
developers can unambiguously interpret. Requirements elicitation is the most challenging
of the two given that it requires the collaboration of several groups of participants who have
different backgrounds. On the one hand, the client and the users have a solid background in
their domain and have a general idea of what the system should do. However, they may
have little experience in software development or interface design. On the other hand, the
developers have experience in building systems but may have little knowledge of the
everyday environment of the users. Moreover, each group may be using incompatible
terminologies.

Scenarios and use cases provide tools for bridging this gap. A scenario describes an example
of use of the system in terms of a series of interactions between the user and the system. A
use case is an abstraction that describes a class of scenarios. Both scenarios and use cases are
written in natural language, a form that is understandable to the user.

In this chapter, we describe requirements elicitation. We then focus the development of
scenarios and use cases for deÞning a system. We then survey a number of requirements
and problem analysis methods. Requirements analysis methods are presented in the next
chapter, Chapter 7,

Requirements Analysis

.

Introduction: a watch example

DRAFT-DO NOT DISTRIBUTE

2

 of

 30

Requirements Elicitation

6.1. Introduction: a watch example

Requirements elicitation focuses on describing

what

 the system should be. The client, the
developers, and the users identify a problem area and deÞne a system that would address
the problem. Such a system deÞnition is called a

system speciÞcation

 and often serves as a
contract between the client and the developers. The system speciÞcation is structured and
formalized during requirements analysis (see Chapter 7,

Requirements Analysis

) to produce
an analysis model (see Figure 69). Both system speciÞcation and analysis model represent
the same information. They differ only the language and notation they use. The system
speciÞcation is written in natural language while the analysis model is usually expressed in
a formal or semi-formal notation. The system speciÞcation serves as a vehicle for
communication with the client and users. The analysis model serves as a vehicle for
communication among developers and for validation. They are both models of the system
in the sense that they attempt to represent accurately the external aspects of the system.
Given that both models represent the same aspects of the system, requirements elicitation
and requirements analysis usually occur concurrently and iteratively.

Requirements elicitation and requirements analysis focus only on the userÕs view of the
system and the constraints imposed by the client (e.g., the environment in which the system
will operate). For example, the system functionality, the interaction between the user and
the system, the errors which the system can detect and handle, the environmental
conditions the system functions, are part of the requirements. The system structure, the
implementation technology selected to build the system, the system design, the

FIGURE 69.

Products of requirements elicitation and requirements analysis (UML
activity diagram).

analysis
model: Model

system
specification:

Model

Requirements
Analysis

Requirements
Elicitation

Introduction: a watch example

 DRAFT - DO NOT DISTRIBUTE

Requirements Elicitation

3

 of

30

development methodology, and other aspects not directly visible to the user are not part of
the requirements.

Functional requirements

describe the interactions between the system and its environment
independent of its implementation. The environment includes the user and any other
external system with which the system of interest interacts. For example, the following is an
example of functional requirements for SatWatch, a watch that resets itself automatically:

Note that the above functional requirements only focus on the possible interactions between
SatWatch and its external world (i.e., the watch owner, GPS, and WebifyWatch). The above
description does not focus on any of the implementation details (e.g., processor, language,
display technology).

Nonfunctional requirements

 describe user visible aspects of the system that are not directly
related with the functional behavior of the system. Nonfunctional requirements include
quantitative constraints such as response time (i.e., how fast the system reacts to user

Functional requirements for SatWatch.

SatWatch is a wrist watch that displays the time based on its location using GPS satellites (Global
Positioning System). The information stored in the watch and its accuracy to measure time is such
(one hundredth of second uncertainty over Þve years) that the watch owner never needs to reset the
time. SatWatch adjusts the time and date displayed as the watch owner crosses time lines and
political boundaries (e.g., standard time vs. daylight saving time). For this reason, SatWatch has no
buttons or controls available to the user.

SatWatch has a two line display showing, on the top line, the time (hour, minute, second, time zone)
and, on the bottom, the date (day of the week, day, month, year). The display technology used is
such that the watch owner can see the time and date even under poor light conditions.

When a new country or state institutes different rules for daylight saving time, the watch owner
may upgrade the software of its watch using the WebifyWatch serial device (provided when the
watch is purchased) and a personal computer connected to the Internet. SatWatch complies with the
physical, electrical, and software interfaces deÞned by WebifyWatch API 2.0.

Introduction: a watch example

DRAFT-DO NOT DISTRIBUTE

4

 of

 30

Requirements Elicitation

commands) or accuracy (i.e., how precise are the systemÕs numerical answers). The
following are the nonfunctional requirements for SatWatch:

Pseudo requirements

are requirements imposed by the client that restrict the implementation
of the system. Typical pseudo requirements are the implementation language and the
platform on which the system is to be implemented. For life critical developments, pseudo
requirements often include process and documentation requirements (e.g, the use of a
formal speciÞcation method, the complete release of all work products). Pseudo
requirements have usually no direct effect on the usersÕ view of the system. The following
are the pseudo functional requirements for SatWatch:

Requirements is a modeling activity. The developer constructs a model describing the reality
as seen from a userÕs point of view. Modeling consists of identifying and classifying real
world phenomena (e.g., aspects of the system under construction) into concepts Figure 70 is
a UML class diagram representing the relationships between models and reality. In this
diagram, a model is said to be correct if each concept in the model corresponds to a relevant
phenomenon. The model is complete if all relevant phenomena are represented by at least
one concept. The model is consistent if all concepts represent phenomena of the same reality
(i.e., if a model is inconsistent, it must represent aspects of two different realities).

Requirements, both functional and nonfunctional, are continuously validated with the client
and the user. Validation is a critical step in the development process given that both the
client and the developer dependent on the system speciÞcation. Requirement validation
checks minimally if the speciÞcation is correct, complete, consistent, unambiguous, and
realistic. A speciÞcation is

correct

 if it represents the client and the developers view of the
system (i.e., everything in the requirements model represent accurately an aspect of the

Nonfunctional requirements for SatWatch.

SatWatch determines its location using GPS satellites, and as such, suffers from the same limitations
as all other GPS devices (e.g., ~ 100 feet accuracy, inability to determine location at certain times of
the day in mountainous regions). During black out periods, SatWatch assumes that it does not cross
a time line or a political boundary. SatWatch corrects its time zone as soon as a black out period
ends.

The battery life of SatWatch is limited to Þve years, which is the estimated life cycle of the housing
of SatWatch. The SatWatch housing is not designed to be opened once manufactured, preventing
battery replacement and repairs. Instead, SatWatch is priced such that the watch owner is expected
to buy a new SatWatch to replace a defective or old SatWatch.

Pseudo requirement for SatWatch.

All related software associated with SatWatch, including the onboard software, will be written
using Java, to comply with current company policy.

Introduction: a watch example

 DRAFT - DO NOT DISTRIBUTE

Requirements Elicitation

5

 of

30

system). It is

complete

 if all possible scenarios through the system are described, included
the behavior of the system in case of exceptional behavior from the part of the user or the
external environment (i.e., all aspects of the system are represented in the requirements
model). The system speciÞcation is

consistent

 if it does not contradict itself. The system
speciÞcation is

unambiguous

 if exactly one system is deÞned (i.e., it is not possible to
interpret the speciÞcation two or more different ways). Finally, it is

realistic

 if the system
can be implemented. This properties are illustrated with UML instance diagrams in
Table 28.

FIGURE 70.

A system is a collection of real world phenomena. A model is a collection of
concepts that represent the systemÕs phenomena. Many models can
represent different aspects of the same system. An unambiguous model
corresponds to only one system.

Table 28 SpeciÞcation properties checked during validation.

Correct ness

- The model describes
the reality of interest to the client,
not another reality.

Complete ness-

Every
phenomenon of interest is
described in the model by a
concept.

Model Reality

Concept Phenomenon

describes

*1

* *

m: Model r: Reality

r2: Reality

c2: Concept

m: Model

c1: Concept
p1:

Phenomenon

r: Reality

p2:
Phenomenon

Introduction: a watch example

DRAFT-DO NOT DISTRIBUTE

6

 of

 30

Requirements Elicitation

The correctness and completeness of a system speciÞcation are often difÞcult to establish,
especially before the system exists. Given that the system speciÞcation serves as a
contractual basis between the client and the developers, the system speciÞcation must be
carefully reviewed by both parties. Additionally, parts of the system that present a high risk
should be prototyped or simulated to demonstrate their feasibility or to obtain feedback
from the user. In the case of SatWatch described above, a mock-up of the watch would be
built using a traditional watch and users surveyed to gather their initial impressions. A user
may remark that she wants the watch to be able to display both american and european date
formats.

Consistency

- All concepts in the
model correspond to phenomena
of the same reality.

Unambiguous

- All concepts in the
model correspond to exactly one
phenomenon.

Realism

The model describes a
reality that can exist.

Table 28 SpeciÞcation properties checked during validation.

r2: Reality

c2: Concept

m: Model

c1: Concept
p1:

Phenomenon

r1: Reality

p2:
Phenomenon

r2: Realitym: Model

c1: Concept
p1:

Phenomenon

r1: Reality

p2:
Phenomenon

m: Model

the Universe
of Realizable Systems

the Universe
of Vaporware

r1: Reality r2: Reality

Introduction: a watch example

 DRAFT - DO NOT DISTRIBUTE

Requirements Elicitation

7

 of

30

Two more desirable properties of a system speciÞcation is that it is veriÞable and traceable.
The speciÞcation is

veriÞable

 if, once the system is built, a repeatable test can be designed to
demonstrate that the system fulÞlls the requirement. For example, a mean time to failure of
a hundred years for SatWatch would be difÞcult to achieve (assuming it is realistic in the
Þrst place). The following requirements are additional examples of non veriÞable
requirements:

¥

the product shall have a good user interface

 (good is not deÞned),

¥

the product shall be error free

 (requires large amount of resources to establish),

¥

the product shall respond to the user with 1 second for most cases

 (Òmost casesÓ is not
deÞned).

A system speciÞcation is

traceable

 if each system function can be traced to its corresponding
set of requirements. Traceability is not a constraint on the content of the speciÞcation, but
rather, on its organization. Traceability facilitates the development of tests and the
systematic validation of the design against the requirements.

Requirements elicitation activities can be classiÞed into three categories, depending on the
source of the requirements. In greenÞeld

 engineering

: the development starts from scratch,
no prior system exists, the requirements are extracted from the users and the client. A
greenÞeld engineering project is triggered by a user need or the creation of a new market.
SatWatch is a greenÞeld engineering project.

A

re-engineering

 project is the re-design and re-implementation of an existing system
triggered by technology enablers or by new information ßows [Hammer & Champy, 1993].
Sometimes, the functionality of the new system is extended, however, the essential purpose
of the system remains the same. The requirements of the new system are extracted from an
existing system.

An

interface engineering

 project is the re-design of the user interface of an existing system.
The legacy system is left untouched, except for its interface which is re-designed and re-
implemented. This type of project is a re-engineering project in which the legacy system
cannot be discarded without entailing high costs. In this section, we examine how
requirements elicitation is performed in both situations.

In both re-engineering and greenÞeld engineering, the developers need to gather as much
information as possible from the application domain. This information can be found in
procedures manuals, documentation distributed to new employees, the previous systemÕs
manual, glossaries, cheat sheets and notes developed by the users, user and client
interviews. Note that interviews with users are an invaluable tool, they fail to gather the
necessary information if the relevant questions are not asked. Developers must Þrst gain a
solid knowledge of the application domain before the direct approach can be used.

Scenario and use cases in requirements elicitation.

DRAFT-DO NOT DISTRIBUTE

8

 of

 30

Requirements Elicitation

In Section 6.3,we survey different approaches to requirements elicitation. In Section 6.2, we
describe different representations provided by UML, such as scenarios and use cases, which
can be used during requirements elicitation and requirements analysis.

6.2. Scenario and use cases in requirements elicitation.

In this section, we revisit the concepts of actor, scenario, and use case, which were
introduced in Chapter 2,

Introduction to UML

. These are the basic representations that we
use during requirements elicitation. We discuss heuristics and methods for extracting
requirements from users and modeling the system in terms of these concepts. Unless
mentioned otherwise, the methods described in this section have been adapted from
Objectory [Objectory, 1993] and Responsibility-driven design [Wirfs-Brock et al., 1990].

6.2.1. Identifying actors

Actors represent external entities which interact with the system. An actor can be human or
an external system. In the SatWatch example described in the introduction of this chapter
(see Section 6.1), the watch owner, the GPS satellites, and the WebifyWatch serial device are
actors (see Figure 71). They all interact and exchange information with the SatWatch. Note,
however, they all have speciÞc interactions with the SatWatch: the watch owner wears and
looks at her watch; the GPS satellites are queried by the watch and return a signal; the
WebifyWatch downloads new data into the watch. Actors deÞne classes of functionality.

Consider a more complex example, the FRIEND system [FRIEND, 1994] we mentioned in
Chapter 2,

Introduction to UML

. FRIEND is a distributed information system for incident
response. It has many actors, including

FieldOfficer

, which represents the police and Þre
ofÞcers who are responding to an incident, and

Dispatcher

, the police ofÞcer responsible
for answering 911 calls and dispatching resources to an incident. The FRIEND system
supports both classes of actors by keeping track of incidents, resources, and task plans. It
also has access to various databases, such as a hazardous materials database and emergency
operations procedures. Both actors interact through different interfaces:

FieldOfficers

access FRIEND through a Newton personal assistant,

Dispatchers

 access FRIEND through
a workstation (see Figure 72).

Note that actors are role abstractions and do not necessarily directly map to persons. The
same person can Þll the role of

FieldOfficer

 or

Dispatcher

 at different times. However,
the functionality they access is substantially different. For that reason, these two roles are
modeled as two different actors.

The Þrst step of requirements elicitation is the deÞnition of the actors. This serves both to
deÞne the boundaries of the system and to Þnd all the perspectives from which the

Scenario and use cases in requirements elicitation.

 DRAFT - DO NOT DISTRIBUTE

Requirements Elicitation

9

 of

30

developers need to consider the system. When the system is deployed into an existing
organization (such as a company), most actors usually pre-exist the system: they correspond
to roles in the organization.

FIGURE 71.

Actors for the SatWatch system.

WatchOwner

 moves the watch (possibly
across time zones) and consults it to know what time it is. SatWatch interacts
with

GPS

 to compute its position.

WebifyWatch

 upgrades the data contained
in the watch to reßect changes in time policy (e.g., changes in daylight
saving time start and end dates).

FIGURE 72.

Actors of the FRIEND system. FieldOfÞcers not only have access to different
functionality, they used different computers to access the system.

To Þnd actors, the following heuristics can be used:a

¥ Which user groups require help from the system to perform their tasks?
¥ Which user groups are needed to execute the systemÕs most obvious main functions?
¥ Which user groups are required to perform secondary functions, such as maintenance and

administration?
¥ Will the system interact with any external hardware or software system?

WatchOwner

GPS

WebifyWatch

SatWatch

FieldOfficer Dispatcher
FRIEND

Scenario and use cases in requirements elicitation. DRAFT-DO NOT DISTRIBUTE

10 of 30 Requirements Elicitation

Once the actors are identiÞed, the next step in the requirements elicitation process is to
determine the functionality that is accessible to each actor. This information can be extracted
using scenarios and formalized using use cases.

6.2.2. Identifying scenarios

A scenario is Òa narrative description of what people do and experience as they try to make
use of computer systems and applications.Ó1 A scenario is a concrete, focused, informal
description of a single feature of the system used from the viewpoint of a single actor. The
use of scenarios in requirements elicitation is a conceptual departure from the traditional
representations which are generic and abstract. Traditional representations are centered
around the system as opposed to the work that the system supports. Finally, their focus is on
completeness, consistency, and accuracy, whereas scenarios are open ended and informal. A
scenario-based approach cannot (and is not intended to) replace completely traditional
approaches. It does, however, enhance requirements elicitation by providing a tool that is
readily understandable to users and clients.

Figure 73 is an example of scenario for the FRIEND system [FRIEND, 1994], an information
system for incident response. In this scenario, a police ofÞcer reports a Þre and a dispatcher
initiates the incident response. Note that this scenario is concrete, in the sense that it
describes a single instance. It does not attempt to describe all possible situations in which a
Þre incident is reported.

a. These heuristics are taken from [Objectory, 1993].

1. [Carroll, 1995], p 3.

Scenario name warehouseOnFire

Participating actor instances bob, alice: FieldOfficer
john: Dispatcher

Scenario and use cases in requirements elicitation. DRAFT - DO NOT DISTRIBUTE

Requirements Elicitation 11 of 30

Scenarios can have many different uses during requirements elicitation and during other
processes of the life cycle. Below is a selected number of scenario types taken from [Carroll,
1995]:

¥ As-is scenario are used to described a current situation. During re-engineering for
example, the current system can be understood by observing users and describing
their actions as scenarios. These scenarios can then be validated for correctness and
accuracy with the users.

¥ Visionary scenarios are used to described a future system, either re-engineered or
designed from scratch. Visionary scenarios are used both as a design representation
by developers as they reÞne their idea of the future system and as a communication
medium to elicit requirements from users. Visionary scenarios can be viewed as an
inexpensive prototype.

¥ Evaluation scenarios are descriptions of user tasks against which the system is to be
evaluated. The collaborative development of evaluation scenarios by users and
developers also improves the deÞnition of the functionality tested by these scenarios.

¥ Training scenarios are tutorials used for introducing new users to the system. These
are step by step instructions designed to hand hold the user through common tasks.

Description 1. Bob, driving down main street in his patrol car notices smoke
coming out of a warehouse. His partner, Alice, activates the ÒReport
EmergencyÓ function from her FRIEND laptop.

2. Alice enters the address of the building, a brief description of its
location (i.e., north west corner), and an emergency level. In
addition to a Þre unit, he requests several paramedic units on the
scene given that area appear to be relatively busy. He conÞrms his
input and waits for an acknowledgment.

3. John, the Dispatcher, is alerted to the emergency by a beep of
his workstation. He reviews the information submitted by Alice
and acknowledges the report. He creates allocates a Þre unit and
two paramedic units to the Incident site and sends their
estimated arrival time (ETA) to Alice.

4. Alice received the acknowledgment and the ETA.

FIGURE 73. warehouseOnFire scenario for the ReportEmergency use case.

Scenario and use cases in requirements elicitation. DRAFT-DO NOT DISTRIBUTE

12 of 30 Requirements Elicitation

In the case of requirements elicitation, developers and users may write and reÞne a series of
scenarios in order to gain a shared understanding of what the system should be. Initially,
each scenario may be high-level and incomplete, as the warehouseOnFire scenario is.

Existing documents about the application domain should be used to answer these
questions. These include user manuals of previous systems, procedures manuals, company
standards, user notes and cheat sheets, user and client interviews. Scenarios should always
be written using application domain terms, as opposed to the developers terms. As further
insight in the application domain and the possibilities of the available technology are
gained, scenarios are iteratively and incrementally reÞned to include sufÞcient detail for a
complete system speciÞcation to be written. Drawing user interface mock-ups often help
Þnd omissions in the speciÞcation and help the users build a more concrete picture of the
system. Note that at this stage, the user interface mock-ups should be used to deÞne the
functionality Þrst, before resolving user interface issues. Putting too much emphasis on user
interface details early may often result in functional issues being overlooked.

Once the users and developers have a good understanding of the system, scenarios are
formalized into use cases.

6.2.3. Identifying use cases

In UML, a scenario is an instance of a use case, that is, a use case speciÞes all possible
scenarios for a given class of functionality. A use case is initiated by an actor. After its
initiation, a use case may interact with other actors as well. A use case represents a complete
ßow of events through the system in the sense that it describes a series of related
interactions that resulted from the initiation of the use case.

Figure 74 depicts the use case ReportEmergency of which the scenario warehouseOnFire
(see Figure 73) is an instance. The FieldOfficer actor initiates this use case by activating
the ÒReport EmergencyÓ function of FRIEND. The use case completes when the
FieldOfficer actor receives an acknowledgment that an incident has been created. This
use case is general and encompasses a range of scenarios. For example, the

Heuristics for Þnding scenarios and use cases:a

a. Adapted from [Objectory, 1993].

¥ What are the primary tasks that the actor wants the system to perform?
¥ What data will the actor access? Who creates that data? Can it be modiÞed or removed? By

whom?
¥ What external changes will the actor need to inform the system about? How often? When?
¥ What changes or events will the actor need to be informed by the system about? With what

latency?

Scenario and use cases in requirements elicitation. DRAFT - DO NOT DISTRIBUTE

Requirements Elicitation 13 of 30

ReportEmergency use case could also apply to a road incident. Note also, however, that use
cases can be written at varying levels of detail as in the case of scenarios. The
ReportEmergency use case may be illustrative enough to describe how FRIEND supports
reporting emergencies and obtain general feedback from the user, it does not provide
sufÞcient detail for this function to be completely speciÞed.

6.2.4. ReÞning use cases

Figure 75 is a reÞned version of the ReportEmergency use case. It has been extended to
include details about the type of incidents that are known to FRIEND, detailed interactions
indicating how the Dispatcher acknowledges the FieldOfficer (i.e., by sending as
FRIENDgram), and illustrated with user interface mock-ups.

The use of scenarios and use cases to deÞne the functionality of the system aims at creating
requirements that are validated by the user early in the development. As the design and

Use case name ReportEmergency

Participating actor initiated by FieldOfficer
communicates with Dispatcher

Entry condition 1. The FieldOfficer activates the ÒReport EmergencyÓ function of
her terminal.

Description 2. FRIEND responds by presenting a form to the ofÞcer.
3. The FieldOfficer Þlls the form, by selecting the emergency level,

type, location, and brief description of the situation. The
FieldOfficer also describes possible responses to the emergency
situation. Once the form is completed, the FieldOfficer submits
the form, at which point, the Dispatcher is notiÞed.

4. The Dispatcher reviews the submitted information and creates an
Incident in the database by invoking the OpenIncident use
case. The Dispatcher selects a response and acknowledges the
emergency report.

Exit condition 5. The FieldOfficer receives the acknowledgment and the selected
response.

Special requirements The FieldOfficerÕs report is acknowledged within 30 seconds. The
selected response arrives no later than 30 seconds after it is sent by the
Dispatcher.

FIGURE 74. An example of use case: ReportEmergency.

Scenario and use cases in requirements elicitation. DRAFT-DO NOT DISTRIBUTE

14 of 30 Requirements Elicitation

User interface mock-ups Use case description

FieldOfÞcer station 1. The FieldOfficer activates the ÒReport
EmergencyÓ function of her terminal.

2. FRIEND responds by presenting a form to the
ofÞcer. The form includes an emergency type
menu (General emergency, Þre, transportation), a
location, incident description, resource request,
and hazardous material Þelds.

3. The FieldOfficer Þlls the form, by
specifying minimally the emergency type and
description Þelds. The FieldOfficer may
also describes possible responses to the
emergency situation and request speciÞc
resources. Once the form is completed, the
FieldOfficer submits the form by pressing
the ÒSend ReportÓ button, at which point, the
Dispatcher is notiÞed.

Dispatcher station 4. The Dispatcher reviews the submitted
information and creates an Incident in the
database by invoking the OpenIncident use
case. All the information contained in the
FieldOfÞcerÕs form is automatically included in
the incident. The Dispatcher selects a
response by allocating resources to the incident
(with the AllocateResource use case) and
acknowledges the emergency report by sending a
FriendGRAM to the FieldOfficer.

FIGURE 75. ReÞned description for the ReportEmergency use case.

Scenario and use cases in requirements elicitation. DRAFT - DO NOT DISTRIBUTE

Requirements Elicitation 15 of 30

implementation of the system starts, the cost of changing the system speciÞcation and
adding new unforeseen functionality increases. Although it is generally not possible to
freeze the requirements of the system until late in the development, developers and users
should strive to address most requirements issues early. This entails lots of changes and
experimentation during requirements elicitation. Note that many use cases are rewritten
several times, others substantially reÞned, and yet others completely dropped. In order to
save time, a lot of the exploration work can be done using scenarios and user interface
mock-ups. Once the system speciÞcation becomes stable, traceability and redundancy issues
are addressed by consolidating and reorganizing the actors and use cases.

FieldOfÞcer station 5. The FieldOfficer receives the
acknowledgment and the selected response.

Heuristics for writing scenarios and use cases:

¥ Use scenarios to communicate with users and to validate functionality.
¥ ReÞne a narrow vertical slice (i.e., one scenario) to understand the userÕs preferred style of

interaction.
¥ DeÞne a horizontal slice (i.e., many not very detailed scenarios) to deÞne the scope of the

system. Validate with the user.
¥ Use mock-ups as a visual support only, user interface design should occur once the

functionality is sufÞciently stable.
¥ Present the user with multiple alternatives (as opposed to extracting a single alternative from

the user).
¥ Detail a broad vertical slice when the scope of the system and the user preferences are well

understood. Validate with the user.

FIGURE 75. ReÞned description for the ReportEmergency use case.

Scenario and use cases in requirements elicitation. DRAFT-DO NOT DISTRIBUTE

16 of 30 Requirements Elicitation

6.2.5. Identifying relationships among actors and use cases

Even a medium size system may have many use cases. Relationships among actors and use
cases enable the developers and users to produce a intelligible model. Communication
relationships between actors and use cases enable the system to be described in layers.
Extends relationships allow exceptional and common ßows of events to be described
independently. Uses relationships help to suppress redundancy across use cases.

Communication relationships between actors and use cases

Communication relationships between actors and use cases denote the ßow of information
during the use case. The actor who initiates the use case should be distinguished from the
other actors with whom the use case communicates. Thus, access control (i.e., which actor
has access to which class functionality) can be represented at this level. The relationships
between actors and use cases are usually identiÞed at the same time as use cases are
identiÞed.

FIGURE 76. Example of communication relationships among actors and use cases in
FRIEND. The FieldOfficer initiates the ReportEmergency use case and
the Dispatcher initiates the OpenIncident and AllocateResource use
cases. FieldOfficers cannot directly open an incident or allocate resources
on their own.

ReportEmergency

FieldOfficer Dispatcher
OpenIncident

AllocateResource

initiates

Scenario and use cases in requirements elicitation. DRAFT - DO NOT DISTRIBUTE

Requirements Elicitation 17 of 30

Extends relationships between use cases

A use case is said to extend another use case if the extended use case may include the
behavior of the extension under certain conditions. For example, assume that the connection
between the FieldOfficer station and the Dispatcher station is broken while the
FieldOfficer is Þlling the form (e.g., the FieldOfficer is in a tunnel. The FieldOfficer
station needs to notify the FieldOfficer that his form was not delivered and what
measures he should take. The HandleConnectionDown use case is modeled as an extension
of ReportEmergency (see Figure 77). The conditions under which the
HandleConnectionDown use case is initiated are described in HandleConnectionDown as
opposed to ReportEmergency. Separating exceptional and optional ßow of events from the
base use case has two advantages. First, the base use case becomes shorter and easier to
understand. Second, the common case is distinguished from the exceptional case, which
enables the developers to treat each type of functionality differently (e.g., optimize the
common case for speed, optimize the exceptional case for clarity). Note that both the
extended use case and the extensions are complete use cases of their own. They must have a
beginning and an end condition, and be understandable by the user as an independent
whole.

Uses relationships between use cases

Shared behavior between use cases can be factored out using uses relationships. Assume
for example that a Dispatcher needs to consult the city map when opening an incident (e.g,
in order to assess which areas are at risk during a Þre) and when allocating resources (e.g., to
Þnd which resources are closer to the incident). In this case, the ViewMap use case describes

FIGURE 77. Example of use of extends relationship. HandleConnectionDown extends
the ReportEmergency use case. The ReportEmergency use case becomes
shorter, clearer, and solely focused on emergency reporting.

ReportEmergency

FieldOfficer
HandleConnectionDown

<<extends>>

Scenario and use cases in requirements elicitation. DRAFT-DO NOT DISTRIBUTE

18 of 30 Requirements Elicitation

the ßow of events required when viewing the city map and is used by both the
OpenIncident and the AllocateResource use cases.

As in coding, factoring out shared behavior from use cases has many beneÞts, including
shorter, clearer descriptions and decreased redundancies. Note that, unlike coding, behavior
should only be factored out into a separate use case if it is shared across two or more use
cases. Excessive fragmentation of the system speciÞcation across a large number of use cases
makes the speciÞcation confusing to everyday users.

Extend vs. uses relationships

Uses and extends are similar constructs, and initially, it may not be clear to the developer
when to use each construct [Jacobson, 1995]. The main distinction between these
constructions is the direction of the relationship. In the case of uses, the conditions under
which the target use case is initiated are described in the initiating use case. In the case of
extends, the conditions under which the extension is initiated are described in the
extension. Figure 79 shows the HandleConnectionDown example described with a uses
relationship (left column) and with an extends relationship (right column). In the left
column, we need to insert text in two places in the event ßow where the
HandleConnectionDown use case can be invoked. Also, if additional exceptional situations
are described (e.g., a Help function on the FieldOfficer station), the ReportEmergency
use case will have to be modiÞed and will become cluttered with conditions. In the right
column, we only need to describe the conditions under which the use case is invoked.
Moreover, additional exceptional situations can be added with modifying the base use case
(e.g., ReportEmergency). The ability to extend the system without modifying existing parts
is critical as it allows us to ensure that the original behavior is left untouched.

FIGURE 78. Example of uses relationships among use cases. ViewMap describes the ßow
of event for viewing a city map (e.g., scrolling, zooming, query by street
name) and is used by both OpenIncident and AllocateResource use
cases.

ViewMap
OpenIncident

AllocateResource

<<uses>>

<<uses>>

Scenario and use cases in requirements elicitation. DRAFT - DO NOT DISTRIBUTE

Requirements Elicitation 19 of 30

ReportEmergency (uses relationship) ReportEmergency (extends relationship)

1. É
2. É
3. The FieldOfficer Þlls the form, by selecting

the emergency level, type, location, and brief
description of the situation. The
FieldOfficer also describes possible
responses to the emergency situation. Once the
form is completed, the FieldOfficer
submits the form, at which point, the
Dispatcher is notiÞed.
If the connection with the Dispatcher is broken, the
HandleConnectionDown use case is used.

4. If the connection is still alive, the Dispatcher
reviews the submitted information and creates
an Incident in the database by invoking the
OpenIncident use case. The Dispatcher
selects a response and acknowledges the
emergency report.
If the connection is broken, the
HandleConnectionDown use case is used.

5. É

1. É
2. É
3. The FieldOfficer Þlls the form, by selecting

the emergency level, type, location, and brief
description of the situation. The
FieldOfficer also describes possible
responses to the emergency situation. Once the
form is completed, the FieldOfficer
submits the form, at which point, the
Dispatcher is notiÞed.

4. The Dispatcher reviews the submitted
information and creates an Incident in the
database by invoking the OpenIncident use
case. The Dispatcher selects a response and
acknowledges the emergency report.

5. É

FIGURE 79. Addition of HandleConnectionDown reÞnement to ReportEmergency. An
extends relationship should be used for exceptional and optional ßow of
events as its yields a more modular description.

Scenario and use cases in requirements elicitation. DRAFT-DO NOT DISTRIBUTE

20 of 30 Requirements Elicitation

6.2.6. Identifying participating objects

Once use cases have been consolidated, developers start identifying the participating
objects for each use cases. Participating objects form the basis for the analysis model,
described in Chapter 7, Requirements Analysis.

One of the Þrst obstacles developers and users will encounter when collaborating is
different terminology. Misunderstandings often result from the same terms being used in
different context and with different meanings. Although the developers will eventually
learn the usersÕ terminology, this problem is likely to be encountered again when new
developers are added to the project.

HandleConnectionDown (uses relationship) HandleConnectionDown (extends relationship)

1. The FieldOfficer and the Dispatcher
are notiÞed that the connection is broken. They
are advised of the possible reasons why such an
event would occur (e.g., ÒIs the
FieldOfficer station in a tunnel?Ó).

2. The situation is logged by the system and
recovered when the connection is re-established.

3. The FieldOfficer and the Dispatcher
enter in contact through other means (e.g.,
telephone) and the Dispatcher initiates
ReportEmergency from the Dispatcher
station.

The HandleConnectionDown use case extends
ReportEmergency when the connection between the
FieldOfÞcer and the Dispatcher is lost.

1. The FieldOfficer and the Dispatcher
are notiÞed that the connection is broken. They
are advised of the possible reasons why such an
event would occur (e.g., ÒIs the
FieldOfficer station in a tunnel?Ó).

2. The situation is logged by the system and
recovered when the connection is re-established.

3. The FieldOfficer and the Dispatcher
enter in contact through other means (e.g.,
telephone) and the Dispatcher initiates
ReportEmergency from the Dispatcher
station.

Heuristics for extends and uses relationships:a

a. From [Objectory, 1993].

¥ Use extends for exceptional, optional, or seldom occurring behavior.
¥ Use uses for behavior that is shared across two or more use cases.

FIGURE 79. Addition of HandleConnectionDown reÞnement to ReportEmergency. An
extends relationship should be used for exceptional and optional ßow of
events as its yields a more modular description.

Scenario and use cases in requirements elicitation. DRAFT - DO NOT DISTRIBUTE

Requirements Elicitation 21 of 30

System speciÞcations, and later, user manuals, include a glossary section deÞning the terms
of art used in the application domain. This glossary should be kept up-to-date as the system
speciÞcation is expanded and revised. The beneÞts of a glossary are multiple: new
developers are exposed to a consistent set of deÞnitions, a single term is used for each
concept (instead of a developer term and a user term), terms have precise and clear ofÞcial
meanings.

The glossary of a system speciÞcation represents the initial version of the analysis model
(described in Chapter 7, Requirements Analysis.). The analysis model itself is usually not used
as means of communication between the users and the developers. However, the
description of the objects (i.e., the deÞnitions of the terms in the glossary) and their
attributes are reviewed with the users.

Many heuristics have been proposed in the literature for identifying objects. Here are a
selected few:

During requirements elicitation, candidate objects should be generated for each use case.
These are called the participating objects of the use case. If two use case refer to the same
concept, the corresponding object should be the same. If two objects share the same name
and do not correspond to the same concept, one or both concepts should be renamed to
emphasize the difference. This process of consolidation aims eliminating any ambiguity in
the terminology used.

Heuristics for identifying participating objects:

¥ Terms that developers or users need to clarify in order to understand the use case,
¥ Recurring nouns in the use cases (e.g., Incident),
¥ Real world entities that the system needs to keep track of (e.g., FieldOfficer,

Dispatcher, Resource),
¥ Real world processes and procedures that the system needs to keep track of (e.g.,

EmergencyOperationsPlan),
¥ Use cases (e.g., ReportEmergency),
¥ Data sources or sinks (e.g., Printer),
¥ Interface artifacts (e.g., Station).
¥ Always use the userÕs terms.

Requirements methods survey DRAFT-DO NOT DISTRIBUTE

22 of 30 Requirements Elicitation

Once candidate objects are identiÞed and consolidated, the developers can use it as a check
list for ensuring the set of identiÞed use cases is complete.

If new use cases are identiÞed, they should be described, integrated in the model, and
reviewed following the process we described before. Note that often in the requirements
elicitation process, shifting perspectives introduces modiÞcations in the system speciÞcation
(e.g., Þnding new participating objects triggers the addition of new use cases; the addition of
new use cases triggers the addition or reÞnement of new participating objects). This
instability should be anticipated and encourage shifting perspectives. For the same reasons,
time consuming tasks such as the description of exceptional cases and reÞnements of the
user interfaces should be postponed until the set of use cases becomes stable.

6.3. Requirements methods survey

In this section, we brießy survey three methods that have been proposed for requirements
or a subset thereof. These include:

¥ Joint Application Design (Section 6.3.1), a group session method that has been
successfully used in IBM and elsewhere. The originality of the method lies in a team
of users, clients, and developers developing requirements during a single workshop
session.

¥ Quality Function Deployment (Section 6.3.2), a method that originated in the
japanese car industry, emphasize the relationship between customer requirements
and product features. The explicit focus on these relationships results in highly
traceable requirements.

¥ Knowledge Analysis of Tasks (Section 6.3.3), a task analysis method that focuses on
describing the problem domain in terms of tasks. Although KAT is not a
requirements method per se, it results in critical information that can be used to
improve the usability of a system and reduce the redesign efforts.

We describe these method to illustrate a broad variety of approaches to requirements and
problem domain analysis.

Heuristics for cross checking use cases and participating objects:

¥ Which use cases creates this object (i.e., during which use cases are the values of the object
attributes entered in the system)? Which actors can access this information?

¥ Which use cases modiÞes and destroys this object (i.e., during which use cases edit or remove
this information from the system)? Which actor can initiate these use cases?

¥ Is this object needed (i.e., is there at least one use case that depend on this information?)

Requirements methods survey DRAFT - DO NOT DISTRIBUTE

Requirements Elicitation 23 of 30

6.3.1. Joint Application Design¨ (JAD)

Joint Application Design (JAD) is a requirements method developed in IBM at the end of the
seventies. Its originality lies in that the requirements work is done in one single workshop
session including all stakeholders. Users, clients, developers, and a trained session leader sit
together in one room to present their view point, listen to other viewpoint, negotiate, and
agree to a mutually acceptable solution. The outcome of the workshop, the Þnal JAD
document, is a system complete speciÞcation document including deÞnitions of data
elements, work ßows, screens, and reports. In addition, the Þnal JAD document represents
an agreement between users, clients, and developers, and thus minimizes requirements
changes late in the development process.

JAD is composed of Þve phases (summarized in Figure 80):

1. Project deÞnition. During this phase, the JAD leader interviews managers and clients
to determine the objectives and the scope of the project. The Þndings from the
interviews are collected in the Management DeÞnition Guide. During this phase, the
JAD leader forms a team composed of users, clients, and developers. All stakeholders
are represented and the participants are able to make binding decisions.

2. Research. During this phase, the JAD leader interviews present and future users,
gathers domain information, describes the work ßows. The JAD leader also starts a
list of issues that will need to be addressed during the session. The primary results of
the Research phase are a Session Agenda and a Preliminary SpeciÞcation listing work
ßow and system information.

3. Preparation. During this phase, the JAD leader prepares the session. The JAD leader
creates a Working Document, Þrst draft of the Þnal document, an agenda for the
session, and any number of overhead slides or ßip charts representing information
gathered during the Research phase.

4. Session. During this phase, the JAD leader guides the team in creating the system
speciÞcation. A JAD session lasts for three to Þve days. The team deÞnes and agrees
on the work ßow, the data elements, the screens, and the reports of the system. All
decisions are documented by a scribe Þlling JAD forms.

5. Final document. The JAD leader prepares the Final Document, revising the working
document to include all decisions made during the session. The Final Document
represents a complete speciÞcation of the system as agreed during the session. The
Final Document is distributed to the sessionÕs participants for review. The
participants then meet for a one to two hour meeting to discuss the reviews and
Þnalize the document.

JAD has been successfully used in IBM and other companies since the mid eighties. JAD
leverages off group dynamics to improve communication among participants and accelerate

Requirements methods survey DRAFT-DO NOT DISTRIBUTE

24 of 30 Requirements Elicitation

FIGURE 80. Phases of JAD (UML activity diagram). The heart of JAD is the Session phase
during which all stakeholders design and agree to a system speciÞcation.
The phases prior to the Session maximizes its efÞciency. The production of
the Þnal document ensures that the decisions made during the Session are
captured.

Project
Definition

Research

Preparation

Session

Final
Document

Management
definition guide

Session agenda

Session script

Preliminary
specification

Working
document

Scribe forms

Requirements methods survey DRAFT - DO NOT DISTRIBUTE

Requirements Elicitation 25 of 30

consensus. At the end of a JAD session, developers are more knowledgeable of users needs,
and users are more knowledgeable of development trade-offs. Additional gains result from
a reduction of re-design activities downstream. Because of its reliance on social dynamics,
the success of a JAD session often depend on the qualiÞcations of the JAD leader as a
meeting facilitator.

6.3.2. Quality Function Deployment (QFD)

Quality Function Deployment (QFD) is a method developed in the japanese car industry in
the sixties as a means for translating customer requirements into speciÞc technical features
[Sullivan, 1986]. Its use in software engineering has been encouraged at the end of the 1980s
[Zultner, 1993]. As JAD, QFD is based on group sessions during which stakeholders trade-
off different product features to meet customer requirements. QFD session focus on
constructing a ÒHouse of QualityÓ for the system Figure 81.

The customer requirements are Þrst listed as rows in the House of Quality. Customer
requirements are gathered from a variety of sources such as existing products, user
interviews, focus groups. QFD does not provide any guidance for this phase. Features are
then proposed to satisfy one or more customer requirements. Proposed product features are
listed across the top of the matrix. They should be listed as a quantiÞable property of the
product. The cells of the matrix are then Þlled with symbols indicating how strongly a
feature supports a requirements: a ● indicates a strong relationship between a requirements
and feature, ❍ indicates a medium relationship, a ▲ indicates a weak relationship, no
symbol indicates no relationship. If any single row have no symbols or only a series of weak
symbols, a customer requirements is not met and product features have to be added or
replaced. The roof of the house of quality is Þlled with symbols to indicate relationships
between features. Features that are strongly related need to be designed together. Features
that are not related can be added or removed from the product independently.

The market evaluation of the product (i.e., right hand side columns) is then added to the
matrix. The Þrst column is the customer rating of each requirements. Requirements that are
necessary or highly desirable are given a high grade. Requirements that represent bells and
whistles are given low grades. The second column of the market evaluation is the evaluation
of the product against competing products, requirement by requirement. The information
from the Þrst and second column is used to identify selling points for the proposed
products.

QFD is not limited to requirements. A similar process can be repeated for each phase of
design, during which the columns of a previous phase become the rows of the next. The roof
of the house of quality can be used to identify independent features and partition the design
into several subsystems.

Requirements methods survey DRAFT-DO NOT DISTRIBUTE

26 of 30 Requirements Elicitation

Although QFD is much older than JAD, its introduction and use in software engineering is
recent and still evolving.

6.3.3. Knowledge Analysis of Tasks (KAT)

Task analysis originated in the United States and the United Kingdom in the Þfties and
sixties [Johnson, 1992]. Initially, task analysis was not concerned with requirements or
system design. Task analysis was used to identify how people should be trained. In the U.S.,
the military was primarily interested in task analysis. In the U.K., the Department of Trade
and Industry were interested in task analysis for developing methods to enable people to

FIGURE 81. QFD House of Quality. Customer requirements are listed as rows. Product
features are listed as columns. An important activity in QFD is to Þll the cells
of the matrix indicating how features support requirements.

Fe
at

ur
e

1

Fe
at

ur
e

2

Fe
at

ur
e

n

Requirement 1

Requirement 2

Requirement n

C
us

to
m

er
 im

po
rt

an
ce

 r
at

in
g

C
om

pe
ti

ti
ve

 e
va

lu
at

io
n

Customer
requirements

Sa
le

s
po

in
ts

Proposed
product

Feature to feature correlation

Requirement to feature
relationship

features

Market evaluation

Requirements methods survey DRAFT - DO NOT DISTRIBUTE

Requirements Elicitation 27 of 30

move across industries. More recently, task analysis become important in the Þeld of
Human Computer Interaction (HCI) for identifying and describing the user tasks that a
system should support.

The Knowledge Analysis of Tasks (KAT) is a task analysis method proposed by [Johnson,
1992]. It is concerned with collecting data from a variety of sources (e.g., interviews,
protocol analysis, textbooks, standard procedures), analyzing these data to identify
individual elements involved in the task (e.g., objects, actions, procedures, goals, and
subgoals), and constructing a model of the overall knowledge used by people
accomplishing the task of interest. KAT is similar to object-oriented analysis in that it
represents the problem domain in terms of objects and actions on them. KAT is different in
that it represents explicitly the goal and subgoals of tasks and procedures.

KAT can be summarized by the Þve following steps:

1. Identifying objects and actions. Object and actions associated with them are
identiÞed using similar techniques as object identiÞcation in object-oriented analysis,
such as analyzing textbooks, manuals, rule books, reports, interviewing the task
performer, observing the task performer.

2. Identifying procedures. A procedure is a set of actions, a pre-condition necessary to
triggering the procedure, and a post condition. Actions may be partially ordered.
Procedures can be identiÞed by writing scenarios, observing the task performer,
asking the task performer to select and order cards on which individual actions are
written.

3. Identifying goals and subgoals. A goal is a state to be achieved for the task to be
successful. Goals can be identiÞed through interview during the performance of a
task or afterwards. Subgoals are identiÞed by decomposing goals.

4. Identifying typicality and importance. Each identiÞed element is rated according to
how frequently it is encountered and to whether it is necessary for accomplishing a
goal.

5. Constructing a model of the task. The information gathered above is generalized to
account for common features across tasks. Corresponding goals, procedures, and
objects are related using a textual notation or a graph. Finally, the model is validated
with the task performer.

Although task analysis and KAT are not requirements methods per se, they can greatly
beneÞt the requirements process in several ways:

¥ During elicitation, they provide techniques for eliciting and describing problem
domain knowledge, including information such as typicality and importance of
speciÞc actions; the end result is understandable by the task performer.

Summary DRAFT-DO NOT DISTRIBUTE

28 of 30 Requirements Elicitation

¥ When deÞning the boundaries of a system, task models assist in determining which
parts of the task should remain manual and which parts should be automated;
moreover, the task model may reveal problem areas in the current system.

¥ When designing the interface of the system, task models may serve as a source of
inspiration for metaphors understandable by the user [Nielsen, 1994].

6.4. Summary

Requirements elicitation is the most difÞcult part of the software development process in
general and of requirements analysis in particular. The main difÞculty lies in that
knowledge relevant to the system development is distributed across several different
groups of participants. Moreover, each group has a different background (i.e., users know
about the application domain; developers know about system development) and may use
incompatible terminologies.

In this chapter, we presented scenarios and use cases as a bridge between users and
developers for representing application domain knowledge. We have also surveyed a
number of methods that explicitly address the user developer gap. In practice, a project may
select combinations of requirements methods to maximize its beneÞts.

In the next chapter (Chapter 7, Requirements Analysis), we examine methods for analyzing
and formalizing requirements. These techniques are used for clarifying requirements and
ensuring their completeness and consistency. We also address issues of documentation and
management in the next chapter.

6.5. Exercises

1. Modify the ReportEmergency use case (described in Figure 79) to include Help
functionality. Justify your choices.

2. Write a scenario and its corresponding use case describing how the WatchOwner actor
interacts with her SatWatch (see Section 6.1).

3. Consider this book as a system. Draw a UML use case diagram depicting the actors
and selected use cases of this system. Consider also past interactions with the book.

4. Explain why multiple choice questionnaires for extracting information from the user
is not effective or desirable in the scope of requirements elicitation.

5. From your point of view, describe the strengths and weaknesses of users during the
requirements elicitation process. Describe also the strengths and weaknesses of
developers during the requirements elicitation process.

References DRAFT - DO NOT DISTRIBUTE

Requirements Elicitation 29 of 30

6.6. References

[Carroll, 1995] J. M. Carroll (Ed), Scenario-Based Design: Envisioning Work and Technology in
System Development, John Wiley & Sons, Inc., New York, 1995.

[FRIEND, 1994] FRIEND Project Documentation, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA 1992-95.

[Hammer & Champy, 1993] M. Hammer and J. Champy, Reengineering The Corporation: a
Manifesto For Business Revolution, Harper Business, New York, 1993.

[Jacobson et al., 1992] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-
Oriented Software Engineering - A Use Case Driven Approach. Reading, MA, Addison-Wesley,
New York, 1992.

[Jacobson, 1995] I. Jacobson. ÒThe Use-Case Construct in Object-Oriented Software
Engineering,Ó In Scenario-Based Design: Envisioning Work and Technology in System
Development, J. M. Carroll (Ed), John Wiley & Sons, Inc., New York, 1995.

[Johnson, 1992] P. Johnson, Human Computer Interaction: psychology, task analysis and software
engineering, McGraw-Hill International, London, 1992.

[Macaulay, 1996] L. Macaulay, Requirements Engineering, Springer Verlag, London, U.K.,
1996.

[Nielsen, 1994] J. Nielsen, Usability Engineering, Academic Press, Boston, MA, 1994.

[Objectory, 1993] Objectory 3.3, Objective Systems SF AB, Kista, Sweden, 1993.

[Sullivan, 1986] L.P. Sullivan, ÒQuality Function Deployment,Ó Quality Progress, vol. 19, no.
6, pp. 39-50, 1986.

[UML Summary, 1997] UML Summary, http://www.rational.com/uml, Rational Software
Corporation, 1997.

[Wirfs-Brock et al., 1990] R. Wirfs-Brock, B. Wilkerson, and Lauren Wiener. Designing Object-
Oriented Software, Prentice-Hall Englewood-Cliffs, NJ, 1990.

[Wirfs-Brock, 1995] R. Wirfs-Brock, ÒDesign Objects and Their Interactions: A Brief Look at
Responsibility-Driven Design,Ó In Scenario-Based Design: Envisioning Work and Technology in
System Development, J. M. Carroll (Ed), John Wiley & Sons, Inc., New York, 1995.

[Wood & Silver, 1989] J. Wood & D. Silver, Joint Application Design¨, John Wiley & Sons, New
York, 1989.

[Zultner, 1993] R. E. Zultner, ÒTQM for Technical Teams,Ó Communications of the ACM, vol
36, no. 10, pp. 79-91, 1993.

References DRAFT-DO NOT DISTRIBUTE

30 of 30 Requirements Elicitation

