

March 3, 1998

DRAFT - DO NOT DISTRIBUTE

3. Software Life Cycle

Software life cycle

 refers to the set of activities that constitute a software project. A software
life cycle starts with concept exploration and ends with the retirement of the system or with
the cancellation of the project. In small projects, the software life cycle is implicit: a
programmer experiences a problem and solves it by developing a small program. Once the
program served its purpose, it is removed and forgotten. In larger project, the life cycle
needs to be explicit: as activities are assigned to different persons, it becomes critical that all
participants share a common view of the execution of the project such that they can produce
the right information to the right participants in a timely manner.

A

software life cycle model

is a framework providing the ordering and dependencies of life
cycle activities. As the complexity of the project increases, managing dependencies among
activities can signiÞcantly impact the success and duration of the project. For example, a
change in requirements during implementation may invalidate a substantial amount of
work and delay the delivery of the system by several months. Different life cycle models
prescribe different actions to handle such changes.

In this chapter, we describe the typical activities and products of a software development
project as deÞned by IEEE standard 1074 [IEEE 1074, 1995]. We then discuss several life
cycle models that describe the dependencies across these activities. We illustrate these
concepts by describing the life cycle and products of the PROSE project.

Introduction

DRAFT-DO NOT DISTRIBUTE

2

 of

 34

Software Life Cycle

3.1. Introduction

A software life cycle is the sequence of activities associated with a software project. For
example, Figure 22 depicts an activity diagram for a simple life cycle (e.g., a shrinkwrapped
software development). In this view, the project life cycle consists of the activities

Problem
definition

,

System development

, and

System operation

.

Note that, as a system can be described by many different system models, a project can be
described by many different life cycles. Figure 23 is an alternate view of the same
shrinkwrapped software project. In this view, the project life cycle consists of the activities:

System development

,

Market creation

, and

System upgrade

.

A life cycle view of a software project emphasizes the activities and tasks in the project.
Neither Figure 22 nor Figure 23 display the products created during development.
Alternatively, a software project can be viewed as a set of products. The life cycle view is
often called

activity-centered

 while a view emphasizing products is called

entity-centered.

For
example, Figure 24 is an entity centered view of the project depicted by Figure 22.

Problem
definition

 uses a

Market survey document

as input and generates a

System
specification document

.

System development

 takes the

System specification
document

as input and produces an

Executable system

.

System operation

 generates a

Lessons learned document

 that will be used during the next product development.

FIGURE 22.

Simple life cycle of a project (UML activity diagram).

FIGURE 23.

Another simple life cycle of a project (UML activity diagram).

System
operation
activity

System
development
activity

Problem
definition
activity

System
upgrade
activity

Market
creation
activity

System
development
activity

Introduction

 DRAFT - DO NOT DISTRIBUTE

Software Life Cycle

3

 of

34

The activity-centered view and the entity-centered view are complementary, as illustrated
by Figure 25. For every product there is one or more activity that generates it. Alternatively,

every activity generates one or more products. The activity-centered view is used for
modeling the process and, more generally, for project management. The entity-centered
view is used for modeling products, for example, in the context of development

FIGURE 24.

Entity-centered view of a project (UML class diagram).

FIGURE 25.

Activities and products (UML class diagram).

Lessons learned
document

System specification
document Executable system

Market survey

Work products

document

Specification

Executable system

Lessons learned

Market survey

Problem definition

System development

System operation

Activity Product

consumes

produces

consumes

produces

consumes

produces

activity

activity

activity

document

document

document

IEEE 1074: Standard For Developing Life Cycle Processes

DRAFT-DO NOT

4

 of

 34

Software Life Cycle

methodologies (see

Chapter 6, Requirements Elicitation

, Chapter 7,

Requirements Analysis

, and
Chapter 8,

System Design

).

In this chapter, we describe the life cycle activities deÞned by the standard IEEE 1074 [IEEE
1074, 1995] (Section 3.2). This standard introduces precise deÞnitions that enable all project
participants to understand and communicate effectively about the life cycle. For example,
we consistently use the terms

processes, activities, tasks

, instead of the terms

stage, step,

or

phase.

Activities are groups of tasks that generate a product. Often activities also consume
products from other activities. In Section 3.2, we also describe the information ßows
between activities and the communication support needed by project participants.

Note that IEEE 1074 does not impose any order between activities. In Section 3.3, we survey
several life cycle models that propose different ordering of activities. In particular, we
discuss the waterfall model [Royse, 1970], the spiral model [Boehm, 1987], the V model, the
sawtooth and shark models, and Objectory [Rational, 1996]. In Section 3.4, we describe the
life cycle model selected for the PROSE project, its activities, products, and information ßow.
In the next chapter, we discuss the problem of managing these activities, that is, the
planning, monitoring, and controlling of these activities.

3.2. IEEE 1074: Standard For Developing Life Cycle Processes

IEEE 1074-1995 [IEEE 1074, 1995],

Standard For Developing Life Cycle Processes,

 provides Òthe
set of Activities that constitute the Processes that are mandatory for the development and
maintenance of software.Ó It establishes a common framework for developing life cycles
and shows mappings into typical software life cycles. Work on this standard was initiated in
1984. The Þrst version of the standard was approved in September 1991. It was revised to
correct trivial errors and was submitted for ballot in August, 1993, and approved September,
1995.

In this section, we summarize the main processes and activities introduced by the standard
and clarify its fundamental concepts using UML diagrams.

3.2.1. Processes and activities

A

process

 is a set of activities that is performed towards a speciÞc purpose (e.g.,
requirements, management, delivery). IEEE 1074 includes six groups of processes consisting
of a total of 17 processes (see Table 1). These include, for example:

¥

the

Requirements Process

, during which the client and the developers describe the
system,

¥

the

Design Process

, during which developers decompose the system into components,

IEEE 1074: Standard For Developing Life Cycle Processes

 DRAFT - DO NOT

Software Life Cycle

5

 of

34

¥

the

Implementation Process

, during which developers realize each component,

¥

the

Project Monitoring and Control Process

, during which management monitors
project progress and takes corrective actions.

Processes are composed of activities. An

activity

 is a task or group of tasks that are assigned
to project participants to achieve a speciÞc purpose. The

Requirements Process

, for example, is
composed of three activities:

¥

DeÞne and Develop Software Requirements

, during which the functionality of the system
is precisely deÞned,

¥

DeÞne Interface Requirements

, during which the interactions between the system and
the user are precisely deÞned, and

¥

Prioritize and Integrate Software Requirements

, during which all requirements are
integrated for consistency, and prioritized by client preference.

Tasks consume resources (e.g., personnel, time, money) and produce a work product.
During planning, activities are decomposed into project speciÞc tasks, are given a start and
ending date and assigned to a team or a project participant (see Figure 26). During the
project, actual work is tracked against planned tasks, and resources are reallocated to
respond to problems.

The processes required by IEEE 1074 are listed in Table 1. Note that in the project course
associated with this book, the Þrst six processes (i.e., the

Life Cycle Modeling Process

, the

Project Management Processes

, and the

Pre-Development Processes

) have already been initiated.

IEEE 1074: Standard For Developing Life Cycle Processes

DRAFT-DO NOT

6

 of

 34

Software Life Cycle

FIGURE 26.

Processes, activities, and tasks (UML class diagram). A process is performed
to accomplish a speciÞc purpose (e.g., requirements, design, installation).
Processes are composed of activities which are in turn of sub activities or
tasks. Tasks represent the smallest piece of work that is relevant to
management (e.g., that can be assigned, scheduled, and tracked). Tasks
consume resources and produces one or more work products.

Project

Activity

Work Product

Resource

Task

Process

Money

Time

Participant

produces

consumes

Phase

*

*

*
*

*

IEEE 1074: Standard For Developing Life Cycle Processes

 DRAFT - DO NOT

Software Life Cycle

7

 of

34

Never the less, we describe these in the next sections (see Sections 3.2.2, 3.2.3, and 3.2.4) so
you understand where your involvement with the project starts.

3.2.2. Life cycle modeling

During

 Life Cycle Modeling

, management selects and orders the activities deÞned in IEEE
1074 for a speciÞc project. Not all projects require the same activities and the same ordering.
For example, projects that do not require a database need not execute the activity

Design
Data Base

. Similarly, if developers adopt a prototyping approach, all development activities
will occur in parallel. The selected life cycle model serves as input to the

Project Initiation
Process

 described in the next section. We provide an example of

Life Cycle Modeling

 in
Section 3.4.1.

3.2.3. Project management

During Project Management, management initiates, monitors, and controls the project
throughout the software life cycle. Project Management consists of three processes.

Table 1 Software Processes in the IEEE Standard 1074

Process group Processes

Life Cycle Modeling
(Section 3.2.2)

Selection of Life Cycle Modeling

Project Management
(Section 3.2.3)

Project Initiation
Project Monitoring and Control
Software Quality Management

Pre-development
(Section 3.2.4)

Concept Exploration
System Allocation

Development
(Section 3.2.5)

Requirements Analysis
Design
Implementation

Post-Development
(Section 3.2.6)

Installation
Operation and Support
Maintenance
Retirement

Cross-Development
(Integral Processes)
(Section 3.2.7)

VeriÞcation and Validation
Software ConÞguration Management
Documentation Development
Training

IEEE 1074: Standard For Developing Life Cycle Processes DRAFT-DO NOT

8 of 34 Software Life Cycle

The Project Initiation Process creates the infrastructure for the project. During this process the
task plan, schedule, budget, organization, and project environment are deÞned. The project
environment includes project standards, communication infrastructure, meeting and
reporting procedures, development methodology, and development tools. Most of the
information generated during this process is documented in the Software Project
Management Plan (SPMP). The Project Initiation Process completes as soon as a stable
environment for the project is established.

The Project Monitoring and Control Process ensures that the project is executed according to
the task plan and budget. If management observes any deviation from the schedule, it will
take corrective action such as reallocating some of the resources, changing procedures, or
replanning. The Software Project Management Plan is updated to reßect any change. The
Project Monitoring and Control Process is active throughout the life cycle.

The Software Quality Management Process ensures that the system under construction meets
the required quality standards (selected during Project Initiation). This process is usually
executed by a different team than the developers to avoid conßicts of interest (i.e., the goal
of the developers is to complete the system on time, the goal of the quality management
team is to ensure that the system is not considered complete until it meets the required
quality standard). The Software Quality Management Process is active throughout most of the
life cycle.

Table 2 Project Management Processes

Process Clausea

a. The ÔClauseÕ column in this table and the other tables in this chapter is a clause number in IEEE 1074. This is a
cross reference to the standards document as published in [IEEE 1074, 1995]

Activities

Project Initiation 3.1.3
3.1.4
3.1.5
3.1.6

Map Activities to Software Life Cycle Model
Allocate Project Resources
Establish Project Environment
Plan Project Management

Project Monitoring and Control 3.2.3
3.2.4
3.2.5
3.2.6
3.2.7

Analyze Risks
Perform Contingency Planning
Manage the Project
Retain Records
Implement Problem Reporting Model

Software Quality Management 3.3.3
3.3.4
3.3.5
3.3.6

Plan Software Quality Management
DeÞne Metrics
Manage Software Quality
Identify Quality Improvement Needs

IEEE 1074: Standard For Developing Life Cycle Processes DRAFT - DO NOT

Software Life Cycle 9 of 34

We describe in detail the activities of Project Initiation and Project Monitoring and Control
related to planning, organization, and tracking in Chapter 4, Project Management. The
activity Establish Project Environment requires particular attention in the context of a team-
based project such as PROSE. One of the critical parts of the project environment is the
communication infrastructure that will support information dissemination among the
participants. For the project to be able to react rapidly to changes and report problems
without introducing an unreasonable overhead, all project participants need to be aware of
the information ßow through the project and the mechanisms for disseminating
information. Chapter 5, Project Communication describes in detail the activities related to
deÞning and using the communication infrastructure. Note that in order to deÞne the
development team structure, and thus, the communication infrastructure, the system
architecture (produced by the System Allocation Process described in the next section) needs
to be deÞned.

3.2.4. Pre-development

During Pre-Development, management (or marketing) and a client identify an idea or a need.
This can be a new development effort (greenÞeld engineering), or a change to the interface
of an existing system (interface engineering) or software replacement of an existing business
process (re-engineering). The System Allocation Process establishes the system architecture, in
particular the subsystem decomposition and identiÞes the hardware, software and
operational requirements. Note that the subsystem decomposition is the foundation of the
communication infrastructure among the project members. The requirements, subsystem
decomposition and communication infrastructure are described in the Problem Statement1
which serves as input into the development process. The Problem Statement is written in
terms of scenarios and user interface sketches that are reÞned into a complete use case
model during the Requirements Analysis Process brießy described in the next section. The
creation of scenarios and use cases is examined in detail in Chapter 6, Requirements
Elicitation.

3.2.5. Development

Development consists of the processes directed toward the construction of the system.

The Requirements Analysis Process takes the system requirements in terms of high-level
functional requirements and produces a complete speciÞcation of the system. In Objectory,
this is done by developing a use case model, a domain model, and an analysis model. The
Requirements Analysis Process is described in detail in Chapter 7, Requirements Analysis.

1. The Statement of Need mentioned in the IEEE 1074 is similar to the problem statement, but does not
contain any project organization information.

IEEE 1074: Standard For Developing Life Cycle Processes DRAFT-DO NOT

10 of 34 Software Life Cycle

The Design Process takes the architecture produced during the System Allocation Process (see
Section 3.2.4) and produces a coherent and well-organized representation of the system. The
high level design is completed (Perform Architectural Design and Design Interfaces activities)
and results into the reÞnement of the subsystem decomposition. This also includes the
allocation of requirements to hardware and software systems, the description of boundary
conditions, the selection of off-the-shelf components and the deÞnition of design goals. The
detailed design of each subsystem is done during the Perform Detailed Design activity.

In Objectory, the Design Process results into the deÞnition of design objects, their attributes
and operations, and their organization into packages. By the end of this activity, all methods
and their type signatures are deÞned. New classes are introduced to take into account non
functional requirements and component speciÞc details. Architectural and detailed design
are described in detail in Chapter 8, System Design.

The Implementation Process takes the design model and produces an equivalent executable
representation. The Implementation Process includes integration planning, and integration
activities. Note that tests performed during this process are independent of those performed
during quality control (see Section 3.2.3) or VeriÞcation and Validation (see Section 3.2.7). The
activities of the Implementation Process and their relationship to the Design Process are
described in more detail in Chapter 8, System Design.

3.2.6. Post-development

Post-Development consists of installation, maintenance, operation and support, and
retirement processes.

During Installation the system software is distributed and installed at the client site. The
installation culminates in the client acceptance test according to the criteria deÞned in the

Table 3 Pre-Development Processes

Process Clause Activities

Concept Exploration 4.1.3
4.1.4
4.1.5
4.1.6
4.1.7

Identify Ideas or Needs
Formulate Potential Approaches
Conduct Feasibility Studies
Plans System Transition (If Applicable)
ReÞne and Finalize the Idea or Need

System Allocation 4.2.3
4.2.4
4.2.5

Analyze Functions
Develop System Architecture
Decompose System Requirementsa

a. System requirements are decomposed into Hardware Requirements and Software Requirements. Hardware
development is not addressed in the IEEE 1074 standard.

IEEE 1074: Standard For Developing Life Cycle Processes DRAFT - DO NOT

Software Life Cycle 11 of 34

project agreement. Operation and Support is concerned with user operation of the system and
user training. Maintenance is concerned with the resolution of software errors, faults and
failures after the delivery of the system. Maintenance requires a ramping of the software life
cycle processes and activities into a new project. Retirement removes an existing system
terminating its operations or support. Retirement takes place when the system is upgraded
or replaced by a new system. To ensure a smooth transition between the two systems, both
systems are often run in parallel until the users have gotten used to the new system. Except
for client delivery and acceptance, we do not address the post-development processes in
this book.

Table 4 Development Processes

Process Clause Activities

Requirements Analysis 5.1.3
5.1.4
5.1.5

DeÞne and Develop Software Requirements
DeÞne Interface Requirements
Prioritize and Integrate Software Requirements

Design 5.2.3
5.2.4
5.2.5
5.2.6
5.2.7

Perform Architectural Design
Design Data Base (If Applicable)
Design Interfaces
Select or Develop Algorithms (If Applicable)
Perform Detailed Design

Implementation 5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8

Create Test Data
Create Source
Generate Object Code
Create Operating Documentation
Plan Integration
Perform Integration

Table 5 Post-Development Processes

Process Clause Activities

Installation 6.1.3
6.1.4
6.1.5
6.1.7

Plan Installation
Distribution of Software
Installation of Software
Accept Software in Operational Environment

Operation and Support 6.2.3
6.2.4
6.2.5

Operation the System
Provide Technical Assistance and Consulting
Maintain Support Request Log

Maintenance 6.3.3 Reapply software life cycle.

Retirement 6.4.3
6.4.4
6.4.5

Notify Users
Conduct Parallel Operations (If Applicable)
Retire System

IEEE 1074: Standard For Developing Life Cycle Processes DRAFT-DO NOT

12 of 34 Software Life Cycle

3.2.7. Cross-Development (Integral Processes)

Several processes take place during the complete duration of the project. These are integral
processes, which we call cross-development processes in the following. Cross-development
process include Validation and VeriÞcation, Software ConÞguration Management, Documentation
Development, and Training.

VeriÞcation and Validation includes veriÞcation and validation tasks. VeriÞcation tasks focus
on showing that the work products and the system comply with the speciÞcation.
VeriÞcation includes reviews, audits, and inspections. Validation tasks focus on ensuring
that the system addresses the clientÕs need. Validation includes system testing, beta testing,
and client acceptance testing. VeriÞcation and Validation activities occur throughout the life
cycle with the intent of detecting anomalies as early as possible. For example, in Objectory,
each model is reviewed against a checklist at the end of the process that generated it. The
review of a model, say the design model, may result in the modiÞcation of models
generated in other processes, say the analysis model. The activity Collect and Analyze Metric
Data may also serve for future projects and contribute to the knowledge of the organization.
The activities Plan Testing and Develop Test Requirements can be initiated as early as the
completion of the requirements analysis. In large projects, these tasks are performed by
different participants than the developers.

Table 6 Cross-Development Processes (called Integral Processes in IEEE 1074)

Process Clause Activities

VeriÞcation and Validation 7.1.3
7.1.4
7.1.5
7.1.6
7.1.7
7.1.8

Plan VeriÞcation and Validation
Execute VeriÞcation and Validation Tasks
Collect and Analyze Metric Data
Plan Testing
Develop Test Requirements
Execute the Tests

Software ConÞguration
Management

7.2.3
7.2.4
7.2.5
7.2.6

Plan ConÞguration Management
Develop ConÞguration IdentiÞcation
Perform ConÞguration Control
Perform Status Accounting

Documentation Development 7.3.3
7.3.4
7.3.5

Plan Documentation
Implement Documentation
Produce and Distribute Documentation

Training 7.4.3
7.4.4
7.4.5
7.4.6

Plan the Training Program
Develop Training Materials
Validate the Training Program
Implement the Training Program

IEEE 1074: Standard For Developing Life Cycle Processes DRAFT - DO NOT

Software Life Cycle 13 of 34

Reviews, audits and inspections are described in Chapter 5, Project Communication. The
review of requirements, analysis, and design models is described in Chapters 6, 7, and 8,
respectively. Testing activities are described in Chapter 11, Testing.

The ConÞguration Management Process focuses on the tracking and control of changes of work
products. Items under conÞguration management include the source code for the system, all
development models, the software project management plan, and all documents visible to
the project participants.

The Documentation Process deals with the work products (excluding code) documenting the
results produced by the other processes. IEEE 1074 does not prescribe speciÞc documents.
The planning and selection of document templates is done during this activity.

For example, in PROSE, the pre-development processes produce the Problem Statement.
The project initiation process produces the initial version of the Software Project
Management Plan. These documents are available before the project starts. The Requirements
Analysis Process describes the current and desired system and produces several system
models.These are described in the Requirements Analysis Document. The Architectural
Design and Identify System Requirements activities produce the System Design Document.

ConÞguration management and documentation are described in detail in Chapter 12,
ConÞguration Management. and Chapter 13, Documentation., respectively. The distribution of
documents to project participants is described in Chapter 5, Project Communication.

3.2.8. Communication in the software life cycle

Figure 27 depicts the information ßow among processes. Each arrow represents a work
product that is generated by a process and consumed by another process. Each arrow
represents a formal communication channel between project participants supported by the
exchange of documents, models, or code. In addition to formal communication, project
participants communicate informally to address transient information needs during change
and crises. Several activities, such as Ò5.3.8 Perform Integration,Ó have stringent informal
communication requirements as they address unforeseen problems. Finally, several
activities in the IEEE 1074 model address exclusively communication and information
dissemination (e.g., Ò3.2.7 Implement Problem Reporting Method,Ó Ò7.2.6 Perform Status
Accounting,Ó and Ò7.3.5. Produce and Distribute DocumentationÓ). When a project
encompasses multiple teams, as the PROSE project does, communication becomes critical
and is often a bottleneck. Chapter 5, Project Communication, addresses these issues and
focuses on the design and installation of the communication infrastructure.

Life Cycle Models DRAFT-DO NOT DISTRIBUTE

14 of 34 Software Life Cycle

As suggested by Figure 27, the information ßow in a software development project can be
complex. The next section describes different life cycle models that attempt to address this
complexity by serializing activities.

3.3. Life Cycle Models

We have now deÞned a set of processes and activities that occur in the software life cycle.
How are they related to each other? What are their dependencies? In what order can we

FIGURE 27. Process interrelationships (from [IEEE 1074, 1995]). As suggested by this
picture, dependencies among processes and activities are complex and
seldom allow a sequential execution of processes.

Life Cycle Models DRAFT - DO NOT DISTRIBUTE

Software Life Cycle 15 of 34

schedule them? That is, in what order should these activities be performed and managed to
deliver a high quality system within budget and within time?

There are no single answers for these questions. First, different projects have different
process requirements. For example, if the application domain is well known, as in the case
of a business re-engineering project, the ordering of the development activities may be
sequential, given that developers may require minimum training. In another instance, a Þrst
of kind project may require substantial prototyping in which case the development
processes will be executed concurrently and the management and conÞguration
management processes will be much more complex. In a third instance, an air trafÞc control
project may require stringent quality assurance and validation processes. For these reasons,
IEEE 1074 does not dictate a speciÞc life cycle, but rather, provides a template that allows
many different life cycle models.

In this section, we review various life cycle models that have been proposed in the literature
and others that are used in practice. Most of these models focus on the development
processes exclusively. This section does not provide algorithmic knowledge that can be
applied immediately. It is rather heuristic knowledge that you need to acquire for yourself
by applying it by trial and error. The project associated with this book allows you to apply it
in a complex setting.

3.3.1. Waterfall model

The waterfall model was Þrst described by Royse [Royse, 1970]. The waterfall model
prescribes a sequential execution of the development processes. The requirements analysis
activities are all completed before the system design activity starts. The goal is to never turn
back once a process is completed. The key feature of his model is the constant veriÞcation
activity (called ÒveriÞcation stepÓ by Royse), that ensures that each development activity
does not introduce unwanted or deletes mandatory requirements. This model provides a
simple (or even simplistic) view of software development that measures progress by the
number of tasks that have been completed. The model assumes that software development
can be scheduled as a step-by-step process that transforms user needs into code. There is an
explicit set of checkpoints, reviews, and documents after each development activity, which
makes it easy to manage the process.

DOD 2197A

Figure 29 shows the DOD 2167A standard life cycle model.The main characteristic of this
model is that each development activity is followed by a review. The starting point in this
model is the system requirements analysis activity whose goal is to generate unambiguous
system requirements. The Þrst review is the system requirements review in which the
requirements are reviewed with respect to completeness, consistency, and clarity. The

Life Cycle Models DRAFT-DO NOT DISTRIBUTE

16 of 34 Software Life Cycle

system requirements are the basis for the system design activity which generates the system
design. The system design is reviewed in the system design review activity.

The system design is baselined once the system design review is successfully completed.The
functional baseline serves as the starting point for the software requirements analysis which
creates the software requirements. The software requirements are then reviewed and

FIGURE 28. The waterfall model of software development: software development
activities are performed in sequence (UML activity diagram of IEEE 1074
processes adapted from [Royse, 1970]; project management and cross-
development processes were omitted).

Requirements
Analysis
Process

System
Allocation
Process

Project
Initiation
Process

Concept
Exploration
Process

Design
Process

Implementation
Process

Installation
Process

Operation &
Support Process

Verification
& Validation

Process

Life Cycle Models DRAFT - DO NOT DISTRIBUTE

Software Life Cycle 17 of 34

FIGURE 29. Waterfall model for the DOD Standard 2167A (UML activity diagram).
2167A activities are used instead of IEEE 1074 activities. Decision points
denote reviews: the subsequent activity is initiated only if the review is
successful.

System
Requirements
Analysis

System

Preliminary
Design

Detailed
Design

Coding &
CSU Testing

CSC
Integration

Software
Requirements
Analysis

System Requirements Review

System Design Review

Software Specification Review

Preliminary Design Review

Critical Design Review (CDR)

É

& Testing

Design

Life Cycle Models DRAFT-DO NOT DISTRIBUTE

18 of 34 Software Life Cycle

baselined before serving as a basis for implementation. Implementation starts with the
preliminary design followed by the detailed design activity. An important review is the
critical design review (CDR). Coding does not occur until the CDR completes successfully.

The 2167A standard is based on functional decomposition, starting from requirements
analysis where functions are speciÞed to implementation where subroutines are combined
to realize user level functions.1 A 2167A compliant system consists of a set of subsystems
called Computer Software ConÞguration Items (CSCI). A CSCI is a software subsystem (in
contrast to a hardware item) that is under conÞguration management control. During
system design the system is decomposed into a set of Computer Software ConÞguration
Items (CSCIs) which in turn are decomposed into Computer Software Components (CSCs)
during preliminary design and into Computer Software Units (CSUs) during detailed
design. Several CSUs make up a Computer Software Component (see Figure 30). A CSC is
deÞned as a functionally distinct piece of software which is part of a CSCI. The
implementation occurs in terms of the CSUs. Testing occurs in three activities: CSU Testing,
CSC Integration and Testing, and System Integration and Testing.

The V-Model

The V-model is a variation of the waterfall model (see Figure 31). Each Development activity
is paired with its corresponding Validation activity. For example, the goal of the Unit Test
activity is the validate units against their description in the detailed design. The Component
Integration and Test activity validates functional components against the preliminary (or high
level) design. Higher levels of abstractions of the V-model deal with the requirements in
terms of elicitation and operation. The middle-part of the V-model focuses on mapping the
understanding of the problem into a software architecture. The lower level of the V-model
focuses on details such as the assembly of software components and the coding new ones.
The difference between the waterfall model and the V model is that the latter makes explicit
the notion of level of abstraction. All activities from requirements to implementation consist
of building more and more detailed representation of the system while all activities from
implementation to operation consist of validating the system.

The waterfall model and its variants are abstractions of the software development process.
In many aspects, they are simplistic. The biggest problem with these models is that they
assume that after an activity is Þnished and reviewed the associated work product can be

1. Functional decomposition is a development methodology while 2167A is a life cycle model. Development
methodologies are recipes indicating how the development activities should be carried out by the
developers. Life cycle models are indicating how life cycle activities should be ordered. Although we
attempt to describe life cycle models and development methodologies independently (given that they
address different aspects of the development), development methodologies often impose constraints on the
life cycle model. The 2167A life cycle was developed assuming a functional decomposition methodology.
Development methodologies are described in further detail in Chapter 8, System Design.

Life Cycle Models DRAFT - DO NOT DISTRIBUTE

Software Life Cycle 19 of 34

baselined. Such an idealized model is only appropriate if the speciÞcation of the
requirements is of high level of assurance and the delivery conditions are easily achievable.
In practice, system development rarely conÞrms to this ideal model and discoveries made
during development require changes to work done during previous activities.

3.3.2. The Spiral Model

The spiral model [Boehm, 1987] was devised to accommodate change during the software
development, the biggest criticism of the waterfall model. It has the same processes as the
waterfall model, however, it adds several activities such as risk management, reuse, and
prototyping. These extended processes are called cycles. or rounds. Each round starts with
risk identiÞcation and is completed by a review involving the participants concerned with
the product being developed, e.g., developers, clients, and users. This review covers the
products developed during the previous and current rounds and the plans for the next
round. The spiral model distinguishes the following rounds:

1. Concept of Operation
2. Software Requirements
3. Software Product Design

FIGURE 30. Levels of abstraction in 2167A (UML class diagram).

Unit (CSU)

Component (CSC)

Configuration Item (CSCI)

Software System

Life Cycle Models DRAFT-DO NOT DISTRIBUTE

20 of 34 Software Life Cycle

4. Detailed Design
5. Code
6. Unit Test
7. Integration and Test
8. Acceptance Test

FIGURE 31. V-Model of Software Development (UML activity diagram; adapted from
[Jensen & Tonies, 1979]). The horizontal object ßow denote the information
ßow between activities of same abstraction level (e.g., the requirements
analysis results are validated during system and integration test). The V
shape layout of the activities was conserved to reßect the original drawing.
However, the layout of the activities has no semantics in UML.

System
Requirements
Analysis

Implementation

Preliminary
Design

Detailed
Design

Software
Requirements
Elicitation

Operation

Client
Acceptance

Requirements
Analysis

Unit
Test

System
Integration

& Test

Component
Integration

& Test

Life Cycle Models DRAFT - DO NOT DISTRIBUTE

Software Life Cycle 21 of 34

9. Implementation

These rounds can be viewed as a spiral displayed in Figure 32.

In Figure 32, the spiral describes the status of the project over time. The distance from the
origin is the cost accumulated by the project. The angular coordinate indicates the progress
accomplished within a cycle. Each cycle includes the following activities:

1. DeÞne Objectives
2. Specify Constraints
3. Generate Alternatives

FIGURE 32. Spiral Model (from [Boehm, 1987]). The Þrst round, concept of operation,
starts in the upper left quadrant. Subsequent rounds are represented by
additional layers on the spiral. The distance from origin represents the cost
accumulated by the project.

Life Cycle Models DRAFT-DO NOT DISTRIBUTE

22 of 34 Software Life Cycle

4. Identify Risks
5. Resolve Risks
6. Plan
7. Commit

The Þrst two activities deÞne the problem addressed by the current cycle. The third activity,
Generate Alternatives, deÞnes the solution space. The activities 4 and 5, Identify risks and
Resolve Risks, serve to identify future problems that may result in high costs or, worse, in
the cancellation of the project. Activity 6, Plan, is a management activity, and activity 7 is the
realization of the cycle.

Note that each cycle follows the waterfall model and that the Þgure illustrates only the Þrst
three activities of the waterfall model (labelled Concept of Operation, Software
Requirements and Software Product Design). The cycles for the remaining activities - called
Detailed Design, Code, Unit Test, Integration and Test, Acceptance Test, Implementation -
are not shown in detail.

3.3.3. The Sawtooth Model

The life cycle models we described until now emphasize the management of software
developers. They do not address the needs of the customer or the user. They assume that the
software requirements will not change drastically and that it is sufÞcient to show progress
according to the development plan. The drawback of this approach is that the client and the
user do not see a running system before the client acceptance test, and thus, cannot correct
any requirement problems.

Users and implementors, however, have different needs when trying to understand
software systems. The sawtooth model [Rowen, 1990] tries to solve this discrepancy by
showing the user and software developerÕs perception of the system as different trajectories
over time and not as the same trajectory as in the waterfall or V-model.

At the beginning of a project, both trajectories have the same starting point, namely the
requirements of the system as described in the problem statement. During development
these trajectories differ quite a bit. The user most probably stays at the level of requirements.
Is the system realizing the required functionality? Does it perform adequately? The
developers concern is about feasibility. Can the functional requirements be realized? What
hardware/software needs to be developed to realize the requirements?1 The software

1. There is actually a trajectory for each person in the system. For example, different developers will have
different trajectories, depending on which team they belong to. The managerÕs point of view is yet another
trajectory which is focusing on management: Can the requirements be decomposed such that they can be
developed and test in parallel, thereby allowing faster development time?

Life Cycle Models DRAFT - DO NOT DISTRIBUTE

Software Life Cycle 23 of 34

development process has to ensure that both trajectories meet at the end of the project. The
sawtooth model achieves this goal by introducing new activities. The span between the
trajectories represents the gap between the userÕs perception of the system and the
developerÕs perception of the system. To make sure that the trajectories meet at the end, it is
wise, to introduce checkpoints during development in which the trajectories brießy meet.
This is usually done by getting the client involved at their level of abstraction.

For example, after the requirements analysis and system design phase, the developers can
prototype the screen sequences in terms of the use cases describing the functional
requirements. By demonstrating this prototype to the client, the client is able to evaluate
quite early in the development whether the prototype satisÞes the functional requirements.
By repeating this process several times during the development, the manager makes sure
that the trajectories intersect several times during the development. This makes it much
more probable that they meet at the end of development.

The sawtooth model is a modiÞed V-Model that includes these intersections of trajectories.
It is called sawtooth model, because each prototype demonstration results in a ÒtoothÓ in the
developer trajectory. The tip of each tooth is an intersection with the clientÕs trajectory.
Figure 33 shows the sawtooth model for a development project with two prototypes, a
revolutionary prototype and an evolutionary prototype.

The revolutionary prototype is often an illustrative prototype because it needs to be built
quickly for demonstrating the functionality of the system. There is little intent to deliver this
prototype for production use.1 No matter how realistic, this prototype is still only a model of
the system. The scenarios demonstrated will be contrived and represent only a small
fraction of the required functionality. The short cuts taken to develop a quick version would
be a maintenance nightmare if this prototype was promoted to production use.

The second prototype is usually an evolutionary prototype. It is shown late in the
development where some functionality has already been implemented. The primary
distinction between the two types of prototyping is that the revolutionary prototype does
not need an overall design whereas the evolutionary prototype does. It is in general
counterproductive to insist on a complete subsystem decomposition when showing the Þrst
prototype to the user.

The tasks and activities of the prototype development process in the sawtooth model are
shown in Table 7.

1. If the revolutionary prototyping environment is identical to the development environment, then it might be
possible to reuse some parts of the revolutionary prototype during implementation. But reuse is not the
goal when producing a revolutionary prototype.

Life Cycle Models DRAFT-DO NOT DISTRIBUTE

24 of 34 Software Life Cycle

FIGURE 33. Sawtooth Model with 2 Prototype demonstrations (UML activity diagram).
The Client swimlane encloses the activities that are visible to the client,
while the developer swimlane encloses the activities that are at a lower
abstraction level.

Table 7 Activities of Prototype Development Process in the Sawtooth Model

Activity Task

Preparation Select prototyping environment
Select functionality to be demonstrated
Develop prototype
Develop agenda for prototype demonstration
Notify client and review agenda

Demonstration Install prototype
Demonstrate selected functionality
Record minutes

System
Requirements
Analysis

Implementation

Preliminary
Design

Detailed
Design

Requirements
Analysis

Unit
Test

Prototype
Demonstration 1

Prototype
Demonstration 2

Client

Developer

Client
Acceptance

System
Integration

& Test

Component
Integration

& Test

Life Cycle Models DRAFT - DO NOT DISTRIBUTE

Software Life Cycle 25 of 34

3.3.4. Sharktooth Model

The sharktooth model is a reÞnement of the sawtooth model. In addition to the client
demonstrations (large teeth) management reviews and demonstrations are introduced as
well (small teeth).

For example, large teeth can include a functional prototype and a user interface mock-up.
The former demonstrates the feasibility of the functions that will be implemented in the
system while the latter illustrates the layout (or look and feel) of the user interface. Small
teeth can include a system integration prototype which demonstrates the interaction
between the components of the system. Such an integration prototype can be built as soon
as the components are selected and need not implement any functionality. The client is of
course not a good target for the demonstration of a system integration prototype. In general
we target the project manager as the audience for the system integration prototype
demonstration and call the associated review an internal review. The system integration
prototype can be demonstrated several times during the project, each of these
demonstration leading to a Òsmall toothÓ.

To describe the demonstrations for management, we add another swimlane to the sawtooth
model that depicts the level of understanding of the project manager (see Figure 34). The
project managerÕs swimlane is shown between the client and the developer swimlanes.
Demonstrating the system integration prototype is a tooth involving the developers and the
project manager. The sharktooth model assumes that the project manager is interested in
system design and object design issues and thus wants to reach deeper level of system
understanding than the client, and neither wants to follow the developer to the lowest levels
of detail in the system. Small teeth are internal reviews involving a prototype demonstration
for the project manager. Large teeth are prototype demonstrations for the client.

3.3.5. Objectory Life Cycle Model

The Rational Objectory Life Cycle is a life cycle model proposed by Booch, Rumbaugh and
Jacobsen [Rational, 1996]. Objectory is an iterative life cycle model similar to the Boehm
spiral model. Each iteration is characterized by the identiÞcation and mitigation of risks.

Evaluation of Feedback Review minutes from demonstration
Identify issues
Discuss issues

Project Correction Resolve open issues

Table 7 Activities of Prototype Development Process in the Sawtooth Model

Activity Task

Life Cycle Models DRAFT-DO NOT DISTRIBUTE

26 of 34 Software Life Cycle

The highest risks are addressed Þrst. Iterations are grouped into four phases: inception,
elaboration, construction, and transition (see Figure 35). The inception phase corresponds to
the IEEE 1074 Concept Exploration activity. During this phase, a need or an idea is deÞned
and its feasibility is evaluated. The elaboration phase corresponds to the project initiation
process, during which the project is planned the system is deÞned and resources are
allocated. The construction phase corresponds to the development processes. The transition
phase corresponds to the installation and post development processes.

Figure 35 depicts the Objectory life cycle model in terms of amount of effort expended into
the phases and their iterations. It emphasizes two aspects of software development that are
usually not captured in life cycle models: the concurrency of processes and the staging of

FIGURE 34. Sharktooth Model with 2 Prototype demonstrations and 1 review (UML
activity diagram, levels of abstraction are represented with swimlanes).
Small teeth reaching the management trajectory are internal reviews
involving a prototype demo by the developers for the project manager.
Large teeth are prototype demonstrations to the client.

System
Requirements

Analysis

Implementation

Preliminary
Design

Detailed
Design

Requirements
Analysis

Unit
Test

Prototype
Demonstration 1

Prototype
Demonstration 2

Client

Manager

Developer

Design
Review

Client
Acceptance

System
Integration and

Test

Component
Integration and

Test

Life Cycle Models DRAFT - DO NOT DISTRIBUTE

Software Life Cycle 27 of 34

resources. For example, even though requirements evolve throughout the entire project,
most of them are completed by the time the construction phase begins. Managing revisions
in the use case models and their consequences in the other project artifacts then becomes
critical.

Figure 35 depicts both an activity-centered and an entity-centered view of the Objectory life
cycle model. The left most column lists the activities that are conducted during the project
while the right most column lists their products. In the Object life cycle model, there is a one
to one mapping of activities and products.

Orthogonal to the life cycle activities shown in Figure 35, Objectory introduces three modes
of developing requirements: forward engineering, during which analysis and design models
are established from scratch and code is generated from these models, reverse engineering,
during which these models are extracted from existing code. Round-trip engineering, is a
combination of reverse engineering and forward engineering. It allows the developer to
switch between these development modes at any time. We discuss these modes in more
detail in Chapter 6, Requirements Elicitation.

FIGURE 35. Rational Objectory Life cycle Model (from [Rational, 1996]). The left most
column lists the processes and activities of Objectory while the right most
column lists the artifacts produced by these processes. The horizontal axis
represents time. The vertical axis represents the amount of resources
committed to each process as a function of time.

Managing activities and products in PROSE DRAFT-DO NOT DISTRIBUTE

28 of 34 Software Life Cycle

3.4. Managing activities and products in PROSE

In this section we describe the process needs for our example project PROSE, select a life
cycle model, deÞne the products produced by PROSE activities, and deÞne the
communication needs.

3.4.1. Process needs and life cycle model selection

PROSE is a pilot project that focuses on developing a demonstration prototype of a software
system requested by a client. A second goal of the project is to expose its participants to
state-of-the-art software engineering methods and tools. It has forty to sixty participants,
most of which have not worked together before. The developers and writers involved in the
project have good technical background in writing programs but no large scale
development experience. The application domain is new to the participants. The delivery of
the Þrst prototype must occur within four months.

We select a life cycle model consisting of three phases. During the Þrst phase, called pre-
development, a preliminary requirements and design of the system is developed for the
purpose of allocating resources for the rest of the project. Infrastructure choices are also
made during the preliminary phase. Only a subset of the project participants are involved.
During the second phase, called development, a vertical slice of the systems is constructed
following a waterfall model. At this point, all participants have been assigned to a team and
are actively working towards the construction of the system. The goal of the development
phase is to validate the architecture of the system and expose the participants to all aspects
of the life cycle. During the third phase, called post-development, functionality is added
incrementally to the system. The goal of the third phase is to extend the functionality of the
system while controlling risks. Functionality is added at all levels of abstractions: the
requirements, design, implementation, and test cases are developed incrementally. The
rationale for this approach is to deliver a functional system on time as opposed to delivering
a complete system late.

Table 8 describes each of these three phases in terms of objectives and IEEE 1074 activities
and processes.

Note that this life cycle is not complete, it does not include operation and support activities
given that the goal of PROSE is to develop a demonstration prototype.

3.4.2. Models and documents

PROSE produces three kinds of information: system information (i.e., what is the system? e.g.,
use cases, class diagrams), management information (i.e., how is it built? e.g., tasks, team

Managing activities and products in PROSE DRAFT - DO NOT DISTRIBUTE

Software Life Cycle 29 of 34

organization), and rationale (i.e., why such a system? e.g., design goals, design
argumentation, justiÞcations). In PROSE, this information is represented by three kinds of
models: task models to represent management information, system models to describe the
system (requirements, analysis, design, implementation), and issue models to represent the
rationale behind design and management decisions.

Task models are detailed, project speciÞc, process models. They are constructed during
project initiation by management and revised throughout the project. The goal of the task
models is to convey the current status and future assignments to all participants. Task
models include a model of the activities and tasks to be done, the persons to which they are
assigned, and the organization of the persons.Task models are represented as UML activity
diagrams, organizational charts, PERT charts, or Gantt charts. They are documented in the
Project Schedule, Software Project Management Plan, and the Top Level Design document
(see Table 9). Task models and documents for PROSE are discussed in Section 4.11.

Table 8 Processes and activities of PROSE

Phase Purpose PROSE activities
Corresponding IEEE 1074
activities

Pre-Development ¥ Initiate project Project Initiation
Concept Exploration
Toplevel design

3.1. Project Initiation
4.1 Concept Exploration
4.2 System Allocation

Development ¥ Validate
architecture

¥ Train
participants

¥ Demonstrate
feasibility

Project Management
Requirements Analysis
System Design
Object Design
Implementation
Unit Testing
System Integration Testing
System Testing (alpha test)
ConÞguration Management
Lectures, Recitations, &
Homeworks

3.2 Project Monitor & Control
5.1 Requirements
5.2 Design
5.2.7 Perform Detailed Design
5.3 Implementation
7.1 VeriÞcation & Validation

7.2 Software ConÞguration
Management
7.4 Training

Post-Development ¥ Complete
functionality

¥ Deliver
prototype

¥ Client
acceptance

Project Management
ReÞnement
Install Software
Accept Software
Field Testing (beta test)
ConÞguration Management
Lectures, Recitations, &
Homeworks

3.2 Project Monitor & Control
6.3 Maintenancea

6.1.5 Install Software
6.1.6 Accept Software
7.1 VeriÞcation & Validation
7.2 Software ConÞguration
Management
7.4 Training

a. Maintenance is deÞned in 1074 as a re-map of the software life cycle, that is, as iterations in the development. In
this table, we use this process to denote iterations in the development, at not maintenance in its traditional mean-
ing.

Managing activities and products in PROSE DRAFT-DO NOT DISTRIBUTE

30 of 34 Software Life Cycle

System models represent the system under construction at different levels of abstraction.
The use case model describes what the system should do, from a userÕs perspective. The
analysis model describes the domain entities that the system manipulates. The design
model represents the structure of the system in classes and objects. The design model is
usually a reÞnement or an extension of the analysis model. The design model is completed
with sequence diagrams which illustrate the sequence of object interactions during use
cases. The use case and analysis models are documented in the requirements analysis
document that the client signs on. The design model and sequence diagrams are
documented in the object design document. System models and their documentation are
discussed in Section 7.4 (analysis models) and Section 8.4 (design models).

Issue models represent the rationale behind the system. In the case of most systems, the
rationale is lost. Developers focus on the system, argue about different alternatives, have
different design goals or based many decisions on prior experience. The system designers
most often know the reasoning and the constraints that drove the decisions behind the
systems. However, this information cannot be recovered from the system alone. Issue
models are used in PROSE to capture this information. The motivation behind capturing the
rationale in PROSE is to facilitate communication and make design goals and constraints
explicit throughout the project. System goals and constraints are described in the system
design document. Issues are described in the open issues document. Issue models for
PROSE are described in Section 9.4.

Tables 9, 10, and 11 list all the documents produced by PROSE. In Section 13.4, we describe
the issues associated with writing the PROSE documentation.

Table 9 Management documents of PROSE

Document Purpose Produced by

Problem Statement Describes the needs, visionary scenarios, current
system, target system, requirements and
constraints

Concept Exploration

Project Schedule Describe major milestones. Project Initiation

Toplevel Design Description of preliminary System Architecture,
Teams, Constraints, Communication
Infrastructure

Toplevel design

Software Project
Management Plan
(SPMP)

Controlling document for managing the project Project Initiation
Project Management

Software
ConÞguration
Management Plan
(SCMP)

Controlling document for software conÞguration
management activities

ConÞguration Management

Managing activities and products in PROSE DRAFT - DO NOT DISTRIBUTE

Software Life Cycle 31 of 34

3.4.3. Communication in IEEE 1074 and in PROSE

Documents represent structured means of communication. For example, during the
development phase of PROSE, the requirements analysis document is used as a basis for
developing the design of the system. When life cycle activities overlap as in the reÞnement
phase of PROSE, this mode of communication, although necessary, is not sufÞcient. Project

Table 10 System documents of PROSE

Document Purpose Produced by

Requirements
Analysis Document
(RAD)

Describes the functional and global requirements
of the system as well as 4 models - the use case
model, the object model, the functional model
and the dynamic model.

Requirements Analysis

User Manual Describes the use of the system often in form of a
tutorial

Requirements Analysis

System Design
Document (SDD)

Describes the design goals, trade-offs made
between design goals, the high level
decomposition of the system, concurrency
identiÞcation, hardware/software platforms,
data management, global resource handling,
software control implementation and boundary
conditions.

System Design

Object Design
Document (ODD)

Describes the system in terms of reÞned object
models, in particular the chosen data structures
and algorithms as well as full signatures for all
public methods. this document results in the
detailed speciÞcation of each class used by the
programmers during the implementation phase.

Object Design

Test Manual Describes testing strategy, the unit and system
tests performed on the system along with
expected and actual results.

Testing

Administrator
Manual

Describes the administrative procedures to
install, operate and bring down the system. Also
contains a list of error codes, failure and
termination conditions.

Install the Software

Table 11 Rationale documents of PROSE

Document Purpose Produced by

Issues Document
(ID)

Describes the open issues, possible options,
arguments, and their resolution

All processes

Exercises DRAFT-DO NOT DISTRIBUTE

32 of 34 Software Life Cycle

participants need to be able to share new ideas, raise issues, report problems, and
brainstorm. These modes of communication are not supported well by documents and need
to be supported otherwise. In many small to mid size projects, these modes of
communication are supported by face-to-face meetings and hallway conversations.
However, project with 40-60 participants such as in PROSE other mechanisms to support a
communication infrastructure are needed. Examples of such mechanisms are electronic
mail, web servers, meeting procedures, and issue databases.

In IEEE 1074, the design and implementation of such a communication infrastructure is
done across several activities such as 3.1.5 Establish Project Environment, 3.2.5 Manage the
Project, 3.2.7 Implement Problem Reporting Method, and 7.2.6 Perform Status Accounting.
Communication pervades a number of activities and is not treated as an cross-development
process in the IEEE 1074 standard. However, in this book we address communication issues
and activities as a cross-development process. We discuss this process in Chapter 5, Project
Communication, and more speciÞcally for the PROSE project in Section 5.4.

3.5. Exercises

1. Adapt Figures 22, 23, and 24 to produce an integrated UML class diagram
representing the activities and workproducts of PROSE.

2. Select one of the rounds in BoehmÕs spiral model and draw a UML activity diagram
for it.

3. Draw a UML activity diagram describing the dependency between activities for a life
cycle in which requirements, design, implementation, test, and maintenance occur
concurrently. (This is called an evolutionary life cycle).

4. Describe how Testing activities can be initiated well before Implementation activities.
Explain why this is desirable.

5. Assume you are part of the IEEE committee that will revise the IEEE 1074 standard.
You have been assigned the task of modeling communication as an cross-
development process. List the activities that would belong to this process.

3.6. References

[Boehm, 1987] B. Boehm, ÒA Spiral Model of Software Development and Enhancement,Ó
Software Engineering Project Management, pp. 128-42, 1987.

[Humphrey, 1989] W. Humphrey, Managing the Software Process, Addison-Wesley, Reading,
MA, 1989.

[IEEE 1074, 1995] IEEE Standard for Developing Software Life Cycle Processes, IEEE Computer
Society, New York, NY, 1995.

References DRAFT - DO NOT DISTRIBUTE

Software Life Cycle 33 of 34

[Jensen & Tonies, 1979] R.W. Jensen & C.C. Tonies, Software Engineering, Prentice Hall,
Englewood Cliffs, N.J., 1979.

[Rational, 1996] Rational Rose: A Rational Approach to Software Development Using Rational
Rose, Rational Software Corporation, Santa Clara, CA, 1996.

[Rowen, 1990] R. B. Rowen, ÒSoftware Project Management Under Incomplete and
Ambiguous SpeciÞcations,Ó IEEE Transactions on Engineering Management, vol. 37, no. 1,
1990.

[Royse, 1970] W. W. Royse, ÒManaging the Development of Large Software SystemsÓ, in
Tutorial: Software Engineering Project Management, pp. 118-27, Computer Society of the
IEEE, Washington, D. C., 1970.

References DRAFT-DO NOT DISTRIBUTE

34 of 34 Software Life Cycle

