
Bernd Brügge Component--Based Software Engineering 1

Requirements Elicitation

15-413

Bernd Bruegge

Carnegie Mellon University

School of Computer Science

3 September 1998

Bernd Brügge Component--Based Software Engineering 2

Defining the System Boundary:
What do you see?

Bernd Brügge Component--Based Software Engineering 3

Odds and Ends

v Nondisclosure Form:
wRead it and return it signed after class, or latest,on

Tuesday

w You cannot participate unless you have signed the
NDA

Bernd Brügge Component--Based Software Engineering 4

 System Identification

v Development of a system is not just done by taking a
snapshot of a scene (domain)

v How can we identify the system?

v Definition of the system boundary
u What is inside? (Subsystems, objects)

u What is outside? (Actors)

u What does it do? (Scenarios, use cases)

v Requirements Process:
w Requirements Elicitation: Definition of the system in terms

understood by the customer

w Requirements Analysis: Definition of the system in terms
understood by the developer.

Bernd Brügge Component--Based Software Engineering 5

Requirements Elicitation vs Requirements
Analysis

v Requirements Elicitation
w Focuses on describing what the system should be.

w The client, developers and users identify a problem area and
describe a system that would address the problem

w The description is called the system specification
u The customer understands this document

u The problem statement is the first iteration of the system
specification

v Requirements Analysis
w Structures and formalizes a system specification and produces

a requirements analysis model

w The requirements analysis model is described in the
requirements analysis document (RAD)

u The developer understands this document

Bernd Brügge Component--Based Software Engineering 6

Modeling

v Requirements elicitation and requirements analysis are
modeling activities.

v The developer constructs a model describing the reality
as seen from a user’s point of view.

v Modeling consists of identifying and classifying real
world phenomena (e.g., aspects of the system under
construction) into concepts

v Model properties
w Completeness: All relevant phenomena are represented by at

least one concept

w Consistency: All concepts represent phenomena of the same
reality

u If the model is inconsistent it represents aspects of two different
realities (one too many!)

Bernd Brügge Component--Based Software Engineering 7

Phenomena and Concepts

v Reality is a collection of phenomena

v A model is a collection of concepts that represent the
phenomena. Many models can represent different aspects
(views) of the same Reality.

Model Reality

Concept Phenomenon

describes

*1

* *

*

Bernd Brügge Component--Based Software Engineering 8

Modeling is an Abstration

v Model describe reality, which can be real systems
(physical world, human being) or artificial systems
(software system).

Bernd Brügge Component--Based Software Engineering 9

UML Notation

v A formal notation to describe models

v UML stands for Unified Modeling Language.
w It unifies notations from Rumbaugh (OMT),Jacobson

(OOSE), Booch (Booch “clouds”) and various other
methodologists.

v Based on type theory
wUML describes a system as a set of classes

v A UML class is a type
w For now we don’t make a distinction between class

and type

Bernd Brügge Component--Based Software Engineering 10

UML Diagrams are notations for models

v A UML diagram consists of a set of nodes and
arcs:

wThe nodes represent the model elements

wThe arcs represent relationships between the
model elements

Bernd Brügge Component--Based Software Engineering 11

UML Diagrams used in 15-413

v 1. Use Case Diagrams (Functional Model)

v 2. Class and Object Diagrams (Object Model)

v 3. Sequence Diagrams (Functional Model)

v 4. Activity Diagrams (Dynamic Model)

v 5. State Diagrams (Dynamic Model)

v 6. Collaboration Diagrams (Dynamic Model)

v 7. Implementation Diagrams (Object Model)
w Component Diagrams, Deployment Diagrams

We introduce the diagrams as we go along

Bernd Brügge Component--Based Software Engineering 12

Online Documentation for UML

v UML 1.1, September 1997
w http://www.rational.com/uml/index.html

w Http://www.rational.com/uml/documentation.html

v Series of documents:
w UML Summary

w UML Notation Guide

w UML Semantics

w UML Extensions (Lifecycle Process, Business Modeling

v I. Jacobson, J. Rumbaugh and G. Booch
w Unified Modeling Language User Guide, Addison-Wesley, to

be published in Oct 1998

Bernd Brügge Component--Based Software Engineering 13

Definition: Requirements

v Functional Requirements
w Describe the interactions between the system and its

environment independent of its implementation

w The environment includes the user and any other external
system which with the system interacts

w Example: Depositing money in bank account

v Nonfunctional Requirements
w Describe user visible aspects of the system that are not directly

related to the functional behavior of the system.

w Example: Response time (The system reacts in 2 seconds or less)

v Pseudo Requirements
w Constraints imposed by the client that restricts the

implementation of the system

w Example: Programming language must be COBOL

Bernd Brügge Component--Based Software Engineering 14

Requirements Validation

v Validation checks if the requirement specification is
correct, complete, consistent, unambiguous and realistic

v Completeness: All possible behavior through the system
are described, including exceptional behavior by the user
or the system

v Correctness: The requirements represent the client’s view

v Consistency: There are functional or nonfunctional
requirements that contradict each other

v Unambiguity: Exactly one system is specified, it is not
possible to interpret the requirements in two or more
ways.

v Realism: Requirements can be implemented and
delivered

Bernd Brügge Component--Based Software Engineering 15

Completeness

v Every phenomenon of interest in the reality has a
corresponding concept in the model

c2: Concept

m: Model

c1: Concept
p1:

Phenomenon

r: Reality

p2:
Phenomenon

Bernd Brügge Component--Based Software Engineering 16

UML Object Diagram

v A collection of elements such as classes and their
relationships to each other.
w Objects are shown as solid rectangles with 3 compartments for

name, attributes and operations
u Object names are of the form Name:Class and are always underlined

(Class names are not)

w Associations are shown as solid arrows.

v Other components:
w Multiplicity, Roles, Qualifier, Aggregation, Inheritance

v More details:
w Bruegge & Dutoit, Chapter 2

w Lecture on Object Modeling (Sep 8)

w http://www.rational.com/uml/html/notation/notation5a.html#5.2

Bernd Brügge Component--Based Software Engineering 17

Correctness

v The model (requirements specification) describes the
reality of interest to the client, not another reality

m: Model r: Reality

r2: Reality

Bernd Brügge Component--Based Software Engineering 18

Consistency

v All concepts in the model correspond to phenomena of
the same reality

r2: Reality

c2: Concept

m: Model

c1: Concept
p1:

Phenomenon

r1: Reality

p2:
Phenomenon

Bernd Brügge Component--Based Software Engineering 19

Unambiguity

v All concepts in the model correspond to exactly one
phenomenon

r2: Realitym: Model

c1: Concept
p1:

Phenomenon

r1: Reality

p2:
Phenomenon

Bernd Brügge Component--Based Software Engineering 20

Realism

m: Model

the Universe
of Realizable Systems

the Universe
of Vaporware

r1: Reality r2: Reality

Bernd Brügge Component--Based Software Engineering 21

Requirements Validation

v Traceability:
wEach system function can be traced to a corresponding

set of functional requirements

v Tool:
w RequisitPro from Rational

u Stores requirements in a repository

u Multi-user access

u Automatically creates a requirements document from the
repository

u Provides traceability and change management throughout the
project lifecycle

u http://www.rational.com/products/reqpro/docs/datasheet.html

Bernd Brügge Component--Based Software Engineering 22

Requirements Elicitation in Different Projects

v Greenfield Engineering
w Development starts from scratch, no prior system exists, the

requirements are extracted from the end users and the client
w Triggered by user needs
w Requirements constantly changing

v Re-engineering
w Re-design and/or re-implementation of an existing system

using newer technology
w Triggered by technology enabler
w Functional requirements are constant but changes are tempting,

nonfunctional requirements are changing

v Interface Engineering
w Provide the services of an existing system in a new

environment
w Triggered by technology enabler or new market needs
w Requirements are constant, nonfunctional requirements changing

Bernd Brügge Component--Based Software Engineering 23

Requirements Elicitation

v Very challenging activity

v Requires collaboration of people with different
backgrounds
w User with application domain knowledge

w Developer with implementation domain knowledge

v Bridges the gap between user and developer

v Scenario-based Requirements Elicitation
w Describes the use of the system in terms of a series of

interactions with between the user and the system

Bernd Brügge Component--Based Software Engineering 24

Interaction between Requirements Elicitation and
Requirements Analysis

analysis
model: Model

system
specification:

Model

Requirements
Analysis

Requirements
Elicitation

Bernd Brügge Component--Based Software Engineering 25

UML Activity Diagram

v A variation of a finite state machine
w Action State: Activity (shown as oval) representing the

performance of operations

w Transitions (shown as solid arrows) are triggered by the
completion of the operations

v Other components of an Activity Diagram:
w Objects, Object Flow Relationships, Decisions, Swimlanes

v Object Flow Relationship: States operate on objects (shown
as solid squares) who are responsible for performing the
action. Object flow from input object or to output object
(shown as dashed arrows) .

v More details:
w Bruegge & Dutoit, Chapter 2

w Lecture on Dynamic Modeling (Oct 1)

w http://www.rational.com/uml/html/notation/notation10.html#10.1

Bernd Brügge Component--Based Software Engineering 26

Types of Scenarios

v As-is scenario:
w Used in describing a current situation. Usually used during re-

engineering. The user describes the system.

v Visionary scenario:
w Used to describe a future system. Usually described in

greenfield engineering or reengineering.
w Can often not be done by the user or developer alone

v Evaluation scenario:
w User tasks against which the system is to be evaluated

v Training scenario:
w Step by step instructions designed to guide a novice user

through a system

Bernd Brügge Component--Based Software Engineering 27

Example Scenario: Warehouse on Fire

v Bob, driving down main street in his patrol car notices
smoke coming out of a warehouse. His partner, Alice,
activates the “Report Emergency” function from her laptop.

v Alice enters the address of the building, a brief description
of its location (i.e., north west corner), and an emergency
level. In addition to a fire unit, she requests paramedic units
on the scene. She confirms her input and waits for an
acknowledgment.

v John, the Dispatcher, is alerted to the emergency by a beep
of his workstation. He reviews the information submitted
by Alice and acknowledges the report. He allocates a fire
unit and two paramedic units to the Incident site and sends
their estimated arrival time (ETA) to Alice.

v Alice receives the acknowledgment and the ETA.

Bernd Brügge Component--Based Software Engineering 28

Observations about Warehouse on Fire Scenario

v Concrete scenario

wDescribes a single instance of reporting a fire
incident.

wDoes not describe all possible situations in which a
fire can be reported.

v Participating actors

wBob, Alice and John

Bernd Brügge Component--Based Software Engineering 29

Heuristics for Finding Scenarios

v Don’t expect the client to be verbal if the system does not
exist (greenfield engineering)

v Don’t wait for information even if the system exists

v Engage in a dialectic approach (evolutionary,
incremental)
w You help the client to formulate the requirements

w The client helps you to understand the requirements

w The requirements evolve while the scenarios are being
developed

Bernd Brügge Component--Based Software Engineering 30

Finding Scenarios

v Insist on task analysis if the system already exists
(interface engineering or reengineering)

v Ask to observe and speak to the end user, not just to the
software contractor
w Expect resistance and try to overcome it

v Do not rely only on questionaires, it is important to
observe the behavior of the end user

Bernd Brügge Component--Based Software Engineering 31

Task Analysis

v Identify and describe the user tasks that a system has to
support
w Important field in Human Computer Interaction (HCI)

v KAT (Knowledge Analysis of Tasks by Johnson):
1. Identify objects and actions

2. Identify procedures (pre-condition, set of actions, post-
condition)

Procedures are identified by task observation, then asking the task
performer to select&order cards containing action descriptions)

3. Identify goals and subgoals (State to be achieved for the task to
be successful)

4. Identify typicality and importance (Each element is rated
according to frequency and relevance to accomplishing a goal)

5. Construct model of task and validate it with performer

Bernd Brügge Component--Based Software Engineering 32

Finding Scenarios ctd

v After task observation, ask the following questions:
w What are the main actors and primary tasks that the system

needs to perform?

w What data will the actors create, store, change, remove or add in
the system?

w What external changes does the system need to know about?

w What changes or events will the actor of the system need to be
informed about?

w Are there any typical scenarios?

w Are there any problems related to load

w What are typical response times?

Bernd Brügge Component--Based Software Engineering 33

Example: Eliciting the Requirements for an
Accident Management System

v What needs to be done to report a “Cat in a Tree”
incident?

v What do you need to do if a person reports “Warehouse
on Fire?”

v Who is involved in reporting an incident?

v What does the system do if no police cars are available? If
the police car has an accident on the way to the “cat in a
tree” incident?

v What do you need to do if the “Cat in the Tree” turns
into a “Grandma has fallen from the Ladder”?

v Can the system cope with a simultaneous incident report
“Warehouse on Fire?”

Bernd Brügge Component--Based Software Engineering 34

Specifying a Scenario

v To communicate with the client use cenarios in problem
statement and in requirements specification

v Components of a scenario:
w Scenario Name

w Participating actor instances

w Description (Flow of Events)

w Nonfunctional Requirements

Bernd Brügge Component--Based Software Engineering 35

Scenario: Allocate a Resource

v Scenario Name: Send a police
car to an incident

v Participating actors:
w Carl: Field Supervisor

w Carol: A neighbor

w Mary: Dispatcher

w Bob: Resource Allocator

w Alice: Field officer

v Description:

w After the the patrol car P11
comes back from the repair
shop, Carl adds it to the
fleet of available patrol
cars at the Bellevue Police
Department

w Carol calls the police and reports
that the warehouse at Morrison
Rd 55 is on fire.

w Mary takes the call and creates an
incident #54 describing Carol’s
call

w Bob looks at the list of available
police cars and selects patrol car
P11. He then commits the car to
the Ware house on fire incident
that was reported 30 minutes ago.

w Alice drives P11 to Morrison Rd.
It turns out that there is no fire at
the warehouse. Alice drives the
car back to police headquarters

w Bob to put the car back on the
list of available police cars.

Bernd Brügge Component--Based Software Engineering 36

Joint Application Design (JAD).

v Developed by IBM in the 70s
using flip charts in a single room
involving all stakeholders
(users, clients, developers and
trained session leader)

v A workshop with 5 activities
w Project Definition

w Research

w Preparation

w Session

w Final Document

v At the end of the workshop the
requirements specification is
produced

Project
Definition

Research

Preparation

Session

Final
Document

Management
definition guide

Session agenda

Session script

Preliminary
specification

Working
document

Scribe forms

Bernd Brügge Component--Based Software Engineering 37

Scenarios lead us to use cases…

v Lecture on Use Case Modeling (Sep 8)

Bernd Brügge Component--Based Software Engineering 38

Summary
v Types of Projects
w Greenfield Engineering, Reengineering, Interface Engineering

v Requirements
w Functional and Nonfunctional Requirements, Constraints

v Requirements Validation
w Correctness, Completeness, Consistency, Unambiguity, Realism

v Scenarios:
w Great way to establish communication with client
w As-Is Scenarios, Visionary scenarios, Evaluation scenarios

Training scenarios

v Scenarios can be used all the way through a project, from
requirements elicitation to system testing

v Methodologies for Requirements Elicitation (JAD, KAT)

