
Bernd Bruegge Software Engineering 1

2

Dynamic Modeling

Bernd Bruegge

Carnegie Mellon University

School of Computer Science

15 September 1998

15-413

Bernd Bruegge Software Engineering 2

Outline of Class

v Odds and Ends

v Entity, Interface and Control Objects

v Dynamic Modeling
w Sequence Diagrams: Interaction between objects

w State Diagrams: Behavior of a single object

w Navigation Paths: Dynamic model of user interface

v Requirements Analysis Example

v Requirements Analysis Template

Bernd Bruegge Software Engineering 3

Odds and Ends

v Event Teams and Learning Teams are merged

v Quizzes

Suggestion:
No quiz as long as attendance is high
We keep an attendance sheet
We will reintroduce quizzes if attendance becomes low

Bernd Bruegge Software Engineering 4

Recap: How do you find classes?
v Scenarios
w Natural language formulation of a concrete usage of the system

v Use Cases
w Natural language formulation of the functions of the system

v Application domain: Domain entities lead to objects

v General world knowledge and intuition

v Textual analysis of problem statement (Abbot)

v Dynamic model (This lecture)
w Sequence diagrams as sources for objects

w State Charts:
u Events: Candiates for operations to be offered by classes

v Design Patterns (Coming soon…)

Bernd Bruegge Software Engineering 5

I found all my use cases and participating objects.
Now what?

1. Partition objects into 3 equivalence classes...

Interface
Objects

Control
Objects

Entity
Objects

2. Do dynamic modeling….

Bernd Bruegge Software Engineering 6

Different Object Types

v Interface objects
w Implement the interaction with the user

w Constructed from UI components (User Interface Management
Systems and Toolkits)

w Subject to most modification

v Entity objects
w Represent the application domain

w Often represent persistent data (=> database management
system)

w Least often modified

v Control objects
w Coordinate between interface and entity objects

w Constructed with Command objects

w Modified frequently but less often than interface objects

Bernd Bruegge Software Engineering 7

Identifying Interface Objects

v In each use case, each actor interacts at least through one
interface object.

v The interface object collects the information from the
actor and translates it into an interface neutral form that
can be used by the control and entity objects.

v Naming:
w <name>_Interface

w <name>_Menu

w <name>_Button

w ….

Bernd Bruegge Software Engineering 8

Identifying Control Objects

v There is often a close relationship between a use case and
a control object.

v A control object is usually created at the beginning of a
use case and ceases to exist at its end.

v It is responsible for collecting information from the
interface objects and dispatching it to entity objects.
w For example, control objects describe the behavior associated

with the sequencing of forms, undo and history queues, and
dispatching information in a distributed system

v Naming
w <name>_Control

Bernd Bruegge Software Engineering 9

Some Heuristics for Identification of Interface and
Control Objects

v Identify one control object per use case or more if the use
case is complex and can be divided into shorter flows of
events,

v Identify one control object per actor in the use case,

v The life span of a control object should be the extent of
the use case or the extent of a user session.

v If it is difficult to identify the beginning and the end of a
control object activation, the corresponding use case may
not have a well defined entry and exit condition.

Bernd Bruegge Software Engineering 10

Dynamic Modeling

v Definition of Dynamic Model:

wA collection of multiple state chart diagrams, one
state chart diagram for each class with important
dynamic behavior.

v Purpose:

wDetect and supply methods for the object model

v How do we do this?

wStart with use case or scenario

wModel interaction between objects => Sequence
Diagram

wModel dynamic behavior of single objects =>
Statechart Diagram

Bernd Bruegge Software Engineering 11

UML Notations for Dynamic Models
v Interaction diagrams
w Sequence Diagram

u Dynamic behavior of a set of objects arranged in time sequence.

u Good for real-time specifications and complex scenarios

w Collaboration Diagram :
u Shows the relationship among objects. Does not show time

v Statechart Diagram:
w A state machine that describes the response of an object of a

given class to the receipt of outside stimuli (Events).

v Activity Diagram:
w Special type of statechart where all states are action states

Bernd Bruegge Software Engineering 12

Sequence Diagrams

v A sequence diagram includes time but does not include
object relationships.

v Sequence diagrams are used to describe use cases (i.e., all
possible interactions betweem participating objects) and
scenarios (i.e., one possible interaction)

v In other words: A sequence diagram is useful to model a
use case or scenario with its participating objects. It also
leads to the detection of new participating objects.

v Sequence Diagrams are basically DAGs (direct acyclic
graphs)
w Time increases from top to bottom

w Spacing is irrelevant. Objects are shown as vertical rectangles

w Events are shown as horizontal arrows from the sending to the
receiving object

Bernd Bruegge Software Engineering 13

Flow of Events: What is an Event?

v Event: Something that happens at a point in time

v Relation of events to each other:
w Causally related: Before, after

w Causally unrelated: concurrent

v Events can be grouped in event classes (event hierarchy).
w Event class “Sound”, Subclass “Phone Ring”, Subclass

“Thunder”

v The term ‘Event’ is often used in two ways:
w As an instance of an event class: “Phone rings at 12:25 in WeH

4123”.

w As an attribute of an event class
u Begin of ringing (12:25 PM)

u Mouse button down(button#, tablet-location)

v Events have a sender and a receiver. Find them for each
event: These are the participating objects

Bernd Bruegge Software Engineering 14

Start with Event Flow in Use case
v Name of Use Case:
w Initiate Phone Call

v Actors:
w Bill
w Callee

v Entry condition:
w The phone receiver is on

the hook

v Flow of events:
w The Caller lifts receiver
w The Dial tone begins
w The Caller dials
w The Phone rings
w The Callee answers phone

v Exit Condition:
w Caller and Callee are

connected

v Exceptions:
w The Callee does not anser

the phone

v Special Requirements:
w Time between lifting the

receiver and getting the
dial tone must be less than
1 sec

w User has 10 secs to start
dialing after the dial tone
appears

w Routing takes not longer
than 5 secs

Bernd Bruegge Software Engineering 15

Sequence Diagram for “Initiate Phone Call”

Phone1:
Phone

Exchange James:
Callee

 Open Connection
Lift Receiver

Phone2:
Phone

Bill:
Caller

Callee
answers

Dial Tone

Ringing ToneRinging Tone

The call is
routed through
the network

a

b
c

b - a < 1 sec

c - b < 10 sec Dial Phone Number

Route

e - d < 5 sec

At this point
the parties
can talk

Stop Ringing Stop Ringing

d
e

Bernd Bruegge Software Engineering 16

Drawing Sequence Diagrams

v Each column represents an object that is participating in
the interaction.

v The vertical axis represents time (from top to bottom).
Messages are shown by full arrows.

v Labels on full arrows represent message names and
arguments.

v Activations (i.e., the time it takes to perform an
operation) are depicted by a rectangle attached to an
object. The height of the rectangle is indicative for the
duration of the operation
w The vertical rectangle shows that an object is active, that is, it is

handling a request made by another object.

w The operation can itself send other requests to other objects

w An object can request an operation from itself (looping arrow)

Bernd Bruegge Software Engineering 17

Style Guide for Sequence Diagrams

v Column 1:
w Models the actor or object who initiates the use case

v Column 2:
w Should be an interface object (that the actor used to initiate the

use case)

v Column 3:
w Should be the control object that manages the rest of the use

case

Bernd Bruegge Software Engineering 18

Some Heuristics for Good Sequence Diagrams

v Control objects are created by interface objects initiating
use cases

v Entity objects are accessed by control and interface
objects

v Entity objects never access interface or control objects.
This makes it easier to share them across use cases.

Bernd Bruegge Software Engineering 19

Using Sequence Diagrams for Design Patterns

v In the text book “Design Patterns” sequence diagrams are
called interaction diagrams..

v A solid vertical line indicates the lifetime of a particular
object

v If the object does not get instantiated until after the
beginning of time as recorded in the diagram, then its
vertical line is dashed until the point of creation, where it
becomes solid.

Bernd Bruegge Software Engineering 20

Another Example

v Flow of events in a “Get SeatPosition” use case :

1. Driver inserts smart card

2. Connection between smart card and onboard
comuter is established

3. Connection between onboard computer and seat is
established

4. Current seat position is obtained and stored on
smart card

5. Driver ejects card

v What are the participating objects?

Smart Card, Onboard Computer, Seat

Bernd Bruegge Software Engineering 21

Sequence Diagram for “Get SeatPosition”

Smart Card
Onboard
Computer

Seat

Connect to Seat

Connect to Seat

Accept Connection

Accept Connection

Get SeatPosition

“5, 10, 24”

InsertCard

EjectCard

Bernd Bruegge Software Engineering 22

State Chart Diagrams: Relating states and events

State2
State1 Event2

Event3

Event1

Bernd Bruegge Software Engineering 23

UML Statechart Diagram Notation

State2State1 Event(attr) [condition]/action

do/activity

entry / action

exit / action
event / action

v Notation based on work by Harel
w Added are a few object-oriented modifications

v A statechart diagram can be mapped into a finite state
machine

Bernd Bruegge Software Engineering 24

Statechart Diagrams

v Graph whose nodes are states and whose directed arcs
are transitions labeled by event names.

v Distinguish between two types of operations:
w Activity: Operation that takes time to complete

u associated with states

w Action: Instantaneous operation
u associated with events

u associated with states (reduces drawing complexity): Entry, Exit,
Internal Action

v A statechart diagram relates events and states for one
class

Bernd Bruegge Software Engineering 25

State

v An abstraction of the attribute of a class
w State is the aggregation of several attributes a class

v Basically an equivalence class of all those attribute values
and links that do no need to be distinguished as far as the
control structure of the system is concerned
w Example: State of a bank

u A bank is either solvent or insolvent

v State has duration

Bernd Bruegge Software Engineering 26

Example of a StateChart Diagram

Idle
Collect Money

coins_in(amount) / add to balance

 do/test item and compute change

 do/make changedo/dispense item

[change=0] [change>0]

[item empty] [select(item)] [change<0]

coins_in(amount) / set balance

cancel / refund coins

Bernd Bruegge Software Engineering 27

Nested State Diagram

v Activities in states are composite items denoting other
lower-level state diagrams

v A lower-level state diagram corresponds to a sequency of
lower-level states and events that are invisible in the
higher-level diagram.

v Sets of substates in a nested state diagram denoting a
superstate are enclosed by a large rounded box, also
called contour.

Bernd Bruegge Software Engineering 28

Example of a Nested Statechart Diagram

Superstate

Idle
Collect Money

coins_in(amount) / add to balance

do/test item and compute change

do/make changedo/dispense item

[change=0] [change>0]

[item empty] [select(item)] [change<0]

coins_in(amount) / set balance

cancel / refund coins

Bernd Bruegge Software Engineering 29

Expanding activity “do:dispense item”

do/move arm
to row

do/move arm
to column

do/push item
off shelf

Arm
ready

‘Dispense item’ as
an atomic activity:

‘Dispense item’ as a composite activity:

do/dispense item

[change=0]

Arm
ready

Bernd Bruegge Software Engineering 30

Superstates

v Goal:

wAvoid ravioli models

wReduce the number of lines in a state diagram

v Transitions from other states to the superstate enter the
first substate of the superstate.

v Transitions to other states from a superstate are inherited
by all the substates (state inheritance)

Bernd Bruegge Software Engineering 31

Modeling Concurrency

v Two types of concurrency

v 1. System concurrency
w State of overall system as the aggregation of state diagrams, one for

each object. Each state diagram is executing concurrently with the
others.

v 2. Object concurrency
w The object can be partitioned into subsets of states (attributes and

links) such that each of them has its own subdiagram.

w The state of the object consists of a set of states: one state from each
subdiagram.

w State diagrams are divided into subdiagrams by dotted lines.

Bernd Bruegge Software Engineering 32

Example of Concurrency within an Object

Emitting

Setting Ready
Up to reset

Do: Dispense
 Cash

Do: Eject
 Card

 Ready

 Cash taken

 Card taken

SynchronizationSplitting control

Bernd Bruegge Software Engineering 33

State Chart Diagram vs Sequence Diagram

v State Chart Diagrams help to identify:
wChanges to an individual object over time

v Sequence Diagrams help to identify
wThe temporal relationship between objects

over time

wSequence of operations as a response to one
ore more events

Bernd Bruegge Software Engineering 34

Dynamic Modeling of User Interfaces

v Statechart diagrams can be used for the design of user
interfaces
w Also called Navigation Path

v States: Name of screens
w Graphical layout of the screen associated with the state (think

instance diagram!) helps significantly when presenting the
dynamic model of the user interface

v Activities and Actions are shown as bullets under screen
name
w Often only the exit action is shown

v State transitions: Result of exit action
w Button click

w Menu selection

w Cursor movements

Bernd Bruegge Software Engineering 35

Practical Tips for Dynamic Modeling

v Use use cases and scenarios when constructing statechart
diagrams (ask the client)

v Construct state charts only for classes with significant
dynamic behavior

v Consider only relevant attributes
w Use abstraction if necessary

v Look at the granularity of the application when deciding
on actions and activities

v Reduce notational clutter
w Try to put actions into state boxes (look for identical actions on

events leading to the same state)

Bernd Bruegge Software Engineering 36

Summary: Requirements Analysis
v 1. What are the transformations?
w Create scenarios and use case diagrams

u Talk to client, observe, get historical records, do thought
experiments

v 2. What is the structure of the system?
w Create class diagrams

u Identify objects. What are the associations between them? What
is their multiplicity

u What are the attributes of the objects?
u What operations are defined on the objects?

v 3. What is its control structure?
w Create sequence diagrams

u Identify senders and receivers
u Show sequence of events exchanged between objects. Identify

event dependencies and event concurrency.

w Create state diagrams
u Only for the dynamically interesting objects.

Object Modeling

Dynamic Modeling

Functional Modeling

Bernd Bruegge Software Engineering 37

Let’s Do Requirements Analysis

1. Analyze the Problem Statement
w Identify functional requirements

w Identify nonfunctional requirements

w Identify constraints

2. Build the Functional Model:
w Develop use cases to illustrate functionality requirements

3. Build dynamic model:
w Develop sequence diagrams to illustrate the interaction

between objects

w Develop state diagrams for objects with interesting behavior

4. Build object model:
w Develop class diagrams showing the structure of the system

Bernd Bruegge Software Engineering 38

Problem Statement:
Direction Control for a Toy Car

v Power is turned on
w Car moves forward and car

headlight shines

v Power is turned off
w Car stops and headlight goes

out.

v Power is turned on
w Headlight shines

v Power is turned off
w Headlight goes out.

v Power is turned on
w Car runs backward with its

headlight shining.

v Power is turned off
w Car stops and headlight goes

out.

v Power is turned on
w Headlight shines

v Power is turned off
w Headlight goes out.

v Power is turned on
w Car runs forward with its

headlight shining.

Bernd Bruegge Software Engineering 39

Find the Functional Model: Do Use Case
Modeling

v Use case 1: System Initialization
wEntry condition: Power is off, car is not moving
w Flow of events:

u Driver turns power on

wExit condition: Car moves forward, headlight is on

v Use case 2: Turn headlight off
wEntry condition: Car moves forward with headlights

on
w Flow of events:

u Driver turns power off, car stops and headlight goes out.
u Driver turns power on, headlight shines and car does not

move.
u Driver turns power off, headlight goes out

wExit condition: Car does not move, headlight is out

Bernd Bruegge Software Engineering 40

Use Cases continued

v Use case 3: Move car backward
wEntry condition: Car is stationary, headlights off
w Flow of events:

u Driver turns power on
wExit condition: Car moves backward, headlight on

v Use case 4: Stop backward moving car
wEntry condition: Car moves backward, headlights on
w Flow of events:

u Driver turns power off, car stops, headlight goes
out.

u Power is turned on, headlight shines and car does
not move.

u Power is turned off, headlight goes out.
wExit condition: Car does not move, headlight is out.

Bernd Bruegge Software Engineering 41

Use Cases continued

v Use case 5: Move car forward
wEntry condition: Car does not move, headlight is

out
w Flow of events

u Driver turns power on
wExit condition:

u Car runs forward with its headlight shining.

Bernd Bruegge Software Engineering 42

Use Case Pruning

v Do we need use case 5?

v Use case 1: System Initialization
w Entry condition: Power is off, car is not moving
w Flow of events:

u Driver turns power on

w Exit condition: Car moves forward, headlight is on

v Use case 5: Move car forward
w Entry condition: Car does not move, headlight is out
w Flow of events

u Driver turns power on
w Exit condition:

u Car runs forward with its headlight shining.

Bernd Bruegge Software Engineering 43

Create a Scenario

v Name: Drive Car

v Sequence of events:
wBilly (Actor!) turns power on

wHeadlight goes on

wWheels starts moving forward

wWheels keeps moving forward

wBilly turns power off

wHeadlight goes off

wWheels stops moving

w . . .

Bernd Bruegge Software Engineering 44

Sequence Diagram for Drive Car Scenario

Power(on)

:Headlight :Wheel

Power(off)

Power(on)

Power(on)

Power(off)

Power(on)

Billy

Bernd Bruegge Software Engineering 45

Dynamic Model of Toy Train: 2 Statecharts
Wheel

Forward

Backward

Stationary Stationary

power
on

power
off

power
off

power
on

Headlight

power
on

power
off

Off

On

Bernd Bruegge Software Engineering 46

Toy Car: Object Model

Wheel

Motion: (Forward,

 Stationary)
 Backward,

Start_Moving()
Stop_Moving()

Headlight

Status: (On, Off)

Switch_On()
Switch_Off()

 Power

Status: (On, Off)

TurnOn()
TurnOff()

Car

Bernd Bruegge Software Engineering 47

When is a model dominant?

v Object model:
wThe system has non-trivial data structures

v Dynamic model:
wThe system has many different types of events: Input,

output, exceptions, errors, …

v Functional model:
wThe system performs complicated transformations such

as difficult computations consisting of many steps.

Bernd Bruegge Software Engineering 48

Examples of Dominant Models

wCompiler:
u Functional model most important.

u Dynamic model is trivial because there is only one type input
and only a few outputs.

wDatabase Management system:
u Object model most important.

u Functional model is trivial, because their purpose is usually
only to store, organize and retrieve data.

w Spreadsheet program:
u Functional model most important.

u Object model is trivial, because the spreadsheet values are
trivial and cannot be structured further. The only interesting
object is the cell.

Bernd Bruegge Software Engineering 49

Collaborative Requirements Analysis

v A system is a collection of subsystems providing services

v Analysis of services is provided by each of the teams
who provide the models for their subsystems

v Integration of team models into the full system model by
Architecture team

v Analysis integration checklist:

wAre all the classes mentioned in the data dictionary?

wAre the names of the methods consistent with the
names of actions, activities, events or processes?

wCheck for assumptions made by each of the services
u Missing methods, classes

u Unmatched associations

Bernd Bruegge Software Engineering 50

Model Integration in Complex System Development

Module 1

 Team 1

User Interface
Team

User Interface

Module

 Integration

Integrated
System

 Model

Revised System
Model

Module 5Module 4

Team 5Team 4

Module 3

Team 3

Module 2

Team 2

Analysis

Analysis
Review

Analysis Analysis Analysis

AnalysisAnalysis

All Teams

Model
Changes

Architecture Team

Bernd Bruegge Software Engineering 51

Requirements Analysis Document Template

v Location of Requirements Analysis Document Template
for PAID:
w PAID Homepage, Work Products, Project Documents

u Requirements Analysis Document (RAD)

v Example of a RAD from an earlier 15-413 project
w OWL Project: http://cascade1.se.cs.cmu.edu/15-413

Bernd Bruegge Software Engineering 52

Requirements Analysis Document Template

v 1.0 General Goals

v 2.0 Current System
w Description of current system

v 3.0 Proposed System
3.1 Overview

3.2 Functional Requirements

3.3 Nonfunctional requirements

3.4 Constraints

3.5 System Model

Bernd Bruegge Software Engineering 53

Section 3.5 System Model

3.5.1 Use case model
- Actors

- Use cases

3.5.2 Object model
- Data dictionary

- Class diagrams (classes, associations, attributes and operations)

3.5.3 Dynamic model
- State diagrams for classes with significant dynamic behavior

3.5.4 User Interface
- Navigational Paths

Bernd Bruegge Software Engineering 54

Section 3.3 Nonfunctional Requirements

 3.3.1 User interface and human factors

 3.3.2 Documentation

 3.3.3 Hardware considerations

 3.3.4 Performance characteristics

 3.3.5 Error handling and extreme conditions

 3.3.6 System interfacing

 3.3.7 Quality issues

 3.3.8 System modifications

 3.3.9 Physical environment

3.3.10 Security issues

3.3.11 Resources and management issues

Bernd Bruegge Software Engineering 55

Nonfunctional Requirements: Trigger Questions

v 3.3.1 User interface and human factors
w What type of user will be using the system?

w Will more than one type of user be using the system?

w What sort of training will be required for each type of user?

w Is it particularly important that the system be easy to learn?

w Is it particularly important that users be protected from making
errors?

w What sort of input/output devices for the human interface are
available, and what are their characteristics?

v 3.3.2 Documentation
w What kind of documentation is required?

w What audience is to be addressed by each document?

Bernd Bruegge Software Engineering 56

Nonfunctional Requirements, ctd

v 3.3.3 Hardware considerations
w What hardware is the proposed system to be used on?

w What are the characteristics of the target hardware, including
memory size and auxiliary storage space?

v 3.3.4 Performance characteristics
w Are there any speed, throughput, or response time constraints on

the system?

w Are there size or capacity constraints on the data to be processed
by the system?

v 3.3.5 Error handling and extreme conditions
w How should the system respond to input errors?

w How should the system respond to extreme conditions?

Bernd Bruegge Software Engineering 57

Nonfunctional Requirements, ctd

v 3.3.6 System interfacing
w Is input coming from systems outside the proposed system?

w Is output going to systems outside the proposed system?

w Are there restrictions on the format or medium that must be
used for input or output?

v 3.3.7 Quality issues
w What are the requirements for reliability?

w Must the system trap faults?

w Is there a maximum acceptable time for restarting the system
after a failure?

w What is the acceptable system downtime per 24-hour period?

w Is it important that the system be portable (able to move to
different hardware or operating system environments)?

Bernd Bruegge Software Engineering 58

Nonfunctional Requirements, ctd

v 3.3.8 System Modifications
w What parts of the system are likely candidates for later

modification?

w What sorts of modifications are expected?

v 3.3.9 Physical Environment
w Where will the target equipment operate?

w Will the target equipment be in one or several locations?

w Will the environmental conditions in any way be out of the
ordinary (for example, unusual temperatures, vibrations,
magnetic fields, ...)?

v 3.3.10 Security Issues
w Must access to any data or the system itself be controlled?

w Is physical security an issue?

Bernd Bruegge Software Engineering 59

Nonfunctional Requirements ctd

v 3.3.11 Resources and Management Issues
w How often will the system be backed up?

w Who will be responsible for the back up?

w Who is responsible for system installation?

w Who will be responsible for system maintenance?

Bernd Bruegge Software Engineering 60

RAD Schedule

v 9/15 Release of Template (project management)
w Each team works on the RAD for their subsystem

v 9/30 Team RADs are due (teams)
w Project management reviews the team RADs

v 10/5 Reviews are due (project management)
w Teams incorporate review comments

v 10/10 Second revision of team RADs due (teams)

v 10/15 Integrated version of RAD (architecture team,
documentation team)

