
Bernd Bruegge 15-413 Software Engineering 1

v 8 September 1994

2

Bernd Bruegge
School of Computer Science

Carnegie Mellon University

Pittsburgh PA 15213

15-413

Lecture Notes on System
Testing

17 November 1998

Bernd Bruegge 15-413 Software Engineering 2

Odds and Ends

v Object Design Review

v Internal Project Review

wStatus of each Subsystem

wDemonstration (Discussion) of demos
demonstrating work products from project
agreement

v Client Acceptance Test

w Preliminary Schedule and Speaker Assignments

v Testing Manual Template

Bernd Bruegge 15-413 Software Engineering 3

Object Design and Implementation Review

v November 24

v Purpose
w Sanity Check with Project Agreement

w Review of Analysis, System Design

w Presentation of Object Design

w Publication of APIs

Bernd Bruegge 15-413 Software Engineering 4

Outline of Object Design Review Presentations

v Scenarios from Project Agreement

v Subsystem Object Model (RAD)

v Hardware/Software Allocation (SDD)

v Algorithm and Data Structure Decisions (ODD)

v Code Example (Stub) (Implementation)

v Services provided by Subsystem

v Services needed by Subsystem

v Status of Subsystem Development

Bernd Bruegge 15-413 Software Engineering 5

Test Manual Document

wTemplate out today

wUnit Test Manual:
u Each team describes and submits a small set of

representative test cases for their subsystem unit test (at
least 2 test cases)

wSystem Test Manual:
u Each team is involved in the description and

implementation of a double or a triple subsystem test

Bernd Bruegge 15-413 Software Engineering 6

The End of the Tunnel (slightly curved)

v 11/17 System testing (today)

v 11/19 Middleware

v 11/24 Object design review (Speakers needed)

v 12/1 Software lifecycle revisited

v 12/3 Guest lecture: Machine learning

v 12/8 Client acceptance test dry run

v 12/10 Client Acceptance Test

Bernd Bruegge 15-413 Software Engineering 7

Upcoming Deadlines

v November 23, 3pm:
w Object Design Document (ODD)

w Revised (if necessary) SDD

v November 24
w Final Homework out

v December 3, 6pm
w Unit Test Manual due

v December 10, 4pm
w System Test Manual due

v December 16, 6pm
w Final Homework due

Bernd Bruegge 15-413 Software Engineering 8

Client Acceptance Test : Presentations

v Where: Rangos Room, University Center

v (20 min) Requirements (1 speaker)
w Functional and global requirements, constraints

w 3 Demos

v (20 min) System Design (1 speaker)
w System Design issues

v Demo 1 (2 speakers)

v Demo 2 (2 speakers)

v Demo 3 (2 speakers)

v For each Demo
w Actual demonstration of selected scenario

w Screen snapshots as backup

Bernd Bruegge 15-413 Software Engineering 9

Object Design and Implementation Review

v One speaker per team still needed

Bernd Bruegge 15-413 Software Engineering 10

Testing Manual

v The test manual consists of a set of separate documents
w Must be in HTML format

w Each team is responsible for their test cases

w One document from each team (posted on document discuss)

v Test manual template placed on 15-413 Home page by
end of today (Test Manual in Work Products)

Bernd Bruegge 15-413 Software Engineering 11

Testing: Integration Strategies

v The entire system is viewed as a collection of subsystems
(sets of classes) determined during the system and object
design.

v The order in which the subsystems are selected for
testing and integration determines the testing strategy

wBig bang integration (Non-incremental)

wBottom up integration

wTop down integration

wSandwich testing

wVariations of the above

v The selection is based on the system decomposition and
the “Calls” Association (from the SDD)

Bernd Bruegge 15-413 Software Engineering 12

Example: Call Hierarchy with 3 Layers

A

B C D

GFE

Layer I

Layer II

Layer III

Bernd Bruegge 15-413 Software Engineering 13

Integration Testing: Big-Bang Approach

Unit Test
Database

Unit Test
Learning

Unit Test
Network

Unit Test
Event Service

Unit Test
Authentication

Unit Test
User Interface

System Test
PAID

Bernd Bruegge 15-413 Software Engineering 14

Bottom-up Testing Strategy

v The subsystem in the lowest layer of the call hierarchy
are tested individually

v Then the next subsystems are tested that call the
previously tested subsystems

v This is done repeatedly until all subsystems are included
in the testing

v Special program needed to do the testing

wTest Driver: A routine that calls a particular
subsystem and passes a test case to it

Bernd Bruegge 15-413 Software Engineering 15

Bottom-up Integration A

B C D

GFE

Layer I

Layer II

Layer III

Test D,G

Test F

Test E

Test G

Test C Test
A, B, C, D,

E, F, G

Test B, E, F

Bernd Bruegge 15-413 Software Engineering 16

Pros and Cons of bottom up integration testing

v Bad for functionally decomposed systems:

wTests the most important subsystem last

v Useful for integrating the following systems

wObject-oriented systems

wSystems with strict performance requirements such
as real-time systems

Bernd Bruegge 15-413 Software Engineering 17

Top-down Testing Strategy

v Test the top layer or the controlling subsystem first

v Then combine all the subsystems that are called by the
tested subsystems and test the resulting collection of
subsystems

v Do this until all subsystems are incorporated into the test

v Special program needed to do the testing:

wTest stub: A program or a method that simulates the
activity of a missing subsystem by answering to the
calling sequence of the calling subsystem and
returning back fake data.

Bernd Bruegge 15-413 Software Engineering 18

Using the Bridge Pattern for Top-Down
Integration Testing

v Use the bridge pattern to provide multiple
implementations under the same interface.

v Interface to a component that is incomplete, not yet
known or unavailable during testing

Database Database Interface
(in Database Facade)

Database
 Implementation

Stub Code
DB Database

(EPC, …)
Ingo’s IOU

Bernd Bruegge 15-413 Software Engineering 19

Top-down Integration Testing
A

B C D

GFE

Layer I

Layer II

Layer III

Test A
Test

A, B, C, D,
E, F, G

Test A, B, C, D

Layer I

Layer I + II

All Layers

Bernd Bruegge 15-413 Software Engineering 20

Pros and Cons of top-down integration testing

☺ Test cases can be defined in terms of the functionality of
the system (functional requirements)

L Writing stubs can be difficult: Stubs must allow all
possible conditions to be tested.

L Possibly a very large number of stubs may be required,
especially if the lowest level of the system contains many
methods.

v One solution to avoid too many stubs: Modified top-down
testing strategy

wTest each layer of the system decomposition
individually before merging the layers

wDisadvantage of modified top-down testing: Both,
stubs and drivers are needed

Bernd Bruegge 15-413 Software Engineering 21

Sandwich Testing Strategy

v Combines top-down strategy with bottom-up strategy

v The system is viewed as having three layers

wA target layer in the middle

wA layer above the target

wA layer below the target

wTesting converges at the target layer

v How do you select the target layer if there are more than
3 layers?

wHeuristic: Select a layer that minimizes the number
of stubs and drivers

Bernd Bruegge 15-413 Software Engineering 22

Selecting Layers for the PAID system

v Top Layer:

wUser Interface, Authentication, Learning

v Middle Layer:

wNetwork, Event Service

v Bottom Layer

wDatabase

Bernd Bruegge 15-413 Software Engineering 23

Sandwich Testing Strategy A

B C D

GFE

Layer I

Layer II

Layer III

Test D,G

Test F

Test E

Test G

Test A

Test
A, B, C, D,

E, F, G

Test B, E, FBottom
Layer
Tests

Top
Layer
Tests

Bernd Bruegge 15-413 Software Engineering 24

Pros and Cons of Sandwich Testing

☺ Top and Bottom Layer Tests can be done in parallel

L Does not test the individual subsystems thoroughly
before integration

v Solution: Modified sandwich testing strategy

Bernd Bruegge 15-413 Software Engineering 25

Modified Sandwich Testing Strategy

v Test in parallel:

wMiddle layer with drivers and stubs

wTop layer with stubs

wBottom layer with drivers

v Test in parallel:

wTop layer accessing middle layer (top layer replaces
drivers)

wBottom accessed by middle layer (bottom layer
replaces stubs)

Bernd Bruegge 15-413 Software Engineering 26

Modified Sandwich Testing Strategy

A

B C D

GFE

Layer I

Layer II

Layer III

Test D,G

Test F

Test E

Test G

Test A

Test
A, B, C, D,

E, F, G

Test B, E, F

Test B

Test D

Test C

Triple
Test I

Triple
Test I

Double
Test I

Double
Test I

Double
Test II

Double
Test II

Triple
Test I

Triple
Test I

Double
Test I

Double
Test I

Double
Test II

Double
Test II

Bernd Bruegge 15-413 Software Engineering 27

Scheduling Sandwich Tests: 15-413 Fall 95

Unit Tests Double Tests Triple Tests SystemTests

Bernd Bruegge 15-413 Software Engineering 28

How do you choose an Integration Strategy?

v Factors to consider

w Amount of test harness
(stubs &drivers)

w Location of critical parts in
the system

w Availability of hardware

w Availability of subsystems

w Scheduling concerns

v Bottom up approach

☺good for object oriented
design methodologies

LTest driver interfaces must
match module interfaces

v Factors to consider

w Amount of test harness
(stubs &drivers)

w Location of critical parts in
the system

w Availability of hardware

w Availability of subsystems

w Scheduling concerns

v Bottom up approach

☺good for object oriented
design methodologies

LTest driver interfaces must
match module interfaces

v Bottom up approach ctd

LTop-level modules are
usually important and cannot
be neglected up to the end of
testing

L Detection of user interface
design errors postponed until
end of testing

v Top down approach

☺Test cases can be defined in
terms of functions examined

LNeed to maintain correctness
of test stubs

LWriting stubs can be difficult

v Bottom up approach ctd

LTop-level modules are
usually important and cannot
be neglected up to the end of
testing

L Detection of user interface
design errors postponed until
end of testing

v Top down approach

☺Test cases can be defined in
terms of functions examined

LNeed to maintain correctness
of test stubs

LWriting stubs can be difficult

Bernd Bruegge 15-413 Software Engineering 29

System Testing

v Structure Testing

v Functional Testing

v Performance Testing

v Acceptance Testing

v Installation Testing

Bernd Bruegge 15-413 Software Engineering 30

System Testing Phases

Tested
Subsystem

Subsystem
Code

Subsystem
Code

FunctionalIntegration

Unit
Test

Tested
Subsystem

System
Decomposition

(from SDD)

System
Decomposition

(from SDD)

Tested
Subsystem

Test Test

Unit
Test

Unit
Test

User
Manual

User
Manual

Requirements
(from RAD)

Requirements
(from RAD)

Subsystem
Code

Subsystem
Code

Subsystem
Code

Subsystem
Code

All tests by developerAll tests by developer

Functioning
System

Integrated
Subsystems

Integration
Strategy

(from Test Manual)

Integration
Strategy

(from Test Manual)

Bernd Bruegge 15-413 Software Engineering 31

Nonfunctional
Requirements

(from SDD)

Nonfunctional
Requirements

(from SDD)

System Testing Phases ctd

User’s understanding
(from User Manual?)

User’s understanding
(from User Manual?)

Tests by developerTests by developer

Performance Acceptance

Client’s
Understanding

of Requirements
(from Project Agreement)

Client’s
Understanding

of Requirements
(from Project Agreement)

Test

Functioning
System

Test
Installation

User
Environment

(Project Agreement)

User
Environment

(Project Agreement)

Test

System in
Use

Usable
System

Validated
System

Accepted
System

Tests (?) by userTests (?) by user

Tests by clientTests by client

Bernd Bruegge 15-413 Software Engineering 32

Structure Testing

Essentially the same as white box testing.
v Goal: Cover all paths in the system design
w Exercise all input and output parameters of each module.

w Exercise all modules and all calls (each module is called at least
once and every module is called by all possible callers.)

w Use conditional and iteration testing as in unit testing.

v Transaction flow diagram (structure test case)
w Transaction: Set of activities associated with a particular class

of input.

w Transaction flow diagram represents the sequence of steps or
activities associated with the processing of the transaction.

w Example of a transaction flow diagram: A list of modules called
during the processing of the transaction : Table, Graph, etc.

Bernd Bruegge 15-413 Software Engineering 33

Functional Testing

.

.

Essentially the same as black box testing
v Goal: Test functionality of system

v Test cases are designed from the requirements analysis
document (better: user manual) and centered around
requirements and key functions (use cases)

v The system is treated as black box.

v Unit test cases can be reused, but in general new test
cases have to be developed.

Bernd Bruegge 15-413 Software Engineering 34

Performance Testing

Quality of requirements determines the ease of performance tests:
w The more explicit the nonfunctional requirements, the easier

they are to test.

v Stress Testing
w Stresses limits of system (maximum number of users, peak

demands, extended operation)

v Volume testing
w Tests what happens if large amounts of data are handled

v Configuration testing
w Tests the various software and hardware configurations

v Compatibility test
w Tests backward compatibility with existing systems

Bernd Bruegge 15-413 Software Engineering 35

Performance Testing ctd

v Security testing
w Ensures security requirements are met

v Timing testing
w Evaluates response times and time to perform a function

v Environmental test
w Tests tolerances for heat, humidity, motion, portability

v Quality testing
w Tests reliability, maintainability and availability of the system

v Recovery testing
w Tests system’s response to presense of errors or loss of data.

Bernd Bruegge 15-413 Software Engineering 36

Performance Testing ctd

v Documentation testing
w Insures the required documents are written and are consistent,

accurate and easy to use

w Functions described but not implemented

wFunctions implemented but not described
w Inconsistencies between requirements and user manual

v Human factors testing

wTests user interface to system

Bernd Bruegge 15-413 Software Engineering 37

Test Cases for Performance Testing

v Push the (integrated) system to its limits.
v Goal: Try to break the subsystem
v Test how the system behaves when overloaded.
w Can bottlenecks be identified? (First candidates for redesign

in the next iteration

v Try unusual orders of execution
w Call a receive() before send()

v Check the system’s response to large volumes of data
w If the system is supposed to handle 1000 items, try it with 1001

items.

v What is the amount of time spent in different use cases?
w Are typical cases executed in a timely fashion?

Bernd Bruegge 15-413 Software Engineering 38

Steps in Integration Testing

.

v 1. Based on the integration
strategy, select a subsystem to be
tested. Unit test all the classes
in the subsystem.

v 2. Put selected subsystem
together; do any preliminary fix-
up necessary to make the
integration test operational
(drivers, stubs)

v 3. Do functional testing: Define
test cases that exercise all uses
cases with the selected
subsystems

v 1. Based on the integration
strategy, select a subsystem to be
tested. Unit test all the classes
in the subsystem.

v 2. Put selected subsystem
together; do any preliminary fix-
up necessary to make the
integration test operational
(drivers, stubs)

v 3. Do functional testing: Define
test cases that exercise all uses
cases with the selected
subsystems

v 4. Do structural testing: Define
test cases that exercise the
selected subsystems

v 5. Execute performance tests

v 6. Keep records of the test cases
and testing activities.

v 7. Based on the integration
strategy, integrate the next set of
subsystems and repeat steps 1
to 7.

The primary goal of integration
testing is to identify errors in the
(current) subsystem
configuration.

v 4. Do structural testing: Define
test cases that exercise the
selected subsystems

v 5. Execute performance tests

v 6. Keep records of the test cases
and testing activities.

v 7. Based on the integration
strategy, integrate the next set of
subsystems and repeat steps 1
to 7.

The primary goal of integration
testing is to identify errors in the
(current) subsystem
configuration.

Bernd Bruegge 15-413 Software Engineering 39

Acceptance Testing

v Goal: Demonstrate system is
ready for operational use
w Choice of tests is made by

client/sponsor

w Many tests can be taken
from integration testing

w Acceptance test is
performed by the client,
not by the developer.

v Majority of all bugs in software
is typically found by the client
after the system is in use, not
by the developers or testers.
Therefore two kinds of
additional tests:

v Goal: Demonstrate system is
ready for operational use
w Choice of tests is made by

client/sponsor

w Many tests can be taken
from integration testing

w Acceptance test is
performed by the client,
not by the developer.

v Majority of all bugs in software
is typically found by the client
after the system is in use, not
by the developers or testers.
Therefore two kinds of
additional tests:

v Alpha test:
w Sponsor uses the software at

the developer’s site.

w Software used in a
controlled setting, with the
developer always ready to
fix bugs.

v Beta test:
w Conducted at sponsor’s site

(developer is not present)

w Software gets a realistic
workout in target
environment

w Potential customer might get
discouraged

v Alpha test:
w Sponsor uses the software at

the developer’s site.

w Software used in a
controlled setting, with the
developer always ready to
fix bugs.

v Beta test:
w Conducted at sponsor’s site

(developer is not present)

w Software gets a realistic
workout in target
environment

w Potential customer might get
discouraged

Bernd Bruegge 15-413 Software Engineering 40

Test Life Cycle

Establish the test objectives

Design the test cases

Write the test cases

Test the test cases

Execute the tests

Evaluate the test results

Change system

Do regression testing

Bernd Bruegge 15-413 Software Engineering 41

Test Team

Test

Analyst

TeamUser

Programmer
too familiar
with code

Professional
Tester

Configuration
Management

Specialist

System
Designer

Bernd Bruegge 15-413 Software Engineering 42

Summary

v Testing is still a black art, but many rules and heuristics
are available

v Testing consists of unit testing, integration testing and
system testing

v Testing has its own lifecycle

v Test documentation is crucial

v Test team: Different members with different backgrounds
are important

v Issues not covered:

wTesting of parallel programs

wTesting & configuration management

wTesting multiple platforms

v Testing is still a black art, but many rules and heuristics
are available

v Testing consists of unit testing, integration testing and
system testing

v Testing has its own lifecycle

v Test documentation is crucial

v Test team: Different members with different backgrounds
are important

v Issues not covered:

wTesting of parallel programs

wTesting & configuration management

wTesting multiple platforms

