
Elizabeth Bigelow 15-413 Software Engineering 1

2

Lecture Notes on Middleware

Elizabeth Bigelow

School of Computer Science

Carnegie Mellon University

19 November 1998

Elizabeth Bigelow 15-413 Software Engineering 2

Odds and Ends

❖ ODD Presentation Reminder

❖ Database API

❖ 15-499!!!!!

Elizabeth Bigelow 15-413 Software Engineering 3

ODD Presenters

❖ Should post slides by this afternoon

❖ Should have review with me by Sunday afternoon

❖ Dry run will be Monday evening at 5:30; check announce
bboard for location

❖ Presentation will be shared with TUM students via
posted video (you can also view yourself on the Web
later via Quicktime)--URL will be announced

❖ Bagels will be served (on me)

Elizabeth Bigelow 15-413 Software Engineering 4

Next Semester’s Advanced Software Engineering
15-499

❖ Will be continuation of PAID

❖ “International Project Management”

❖ All students will need to participate in communication
with Germany--lots of technological alternatives will be
available

❖ Experimental approaches--some travel required

❖ Time ???

Elizabeth Bigelow 15-413 Software Engineering 5

Collaborative Project Structure

Wearable E-Commerce

Network Learning

Architecture
Group

Bigelow
CMU Instructor

Database Authentication

Network Learning

Bruegge
TUM Instructor

Bruegge
Project Manager

User Interface

Elizabeth Bigelow 15-413 Software Engineering 6

Areas for Work at CMU

❖ Wearables
w Investigate current state of the art

w Pick a wearable computer

w Design and implement a user interface on it within the design
space of CPU, Network and memory considerations

❖ E-Commerce
w Investigate current state of the art

w Reuse existing billing software from Deutsche Telekom

w Provide a secure interface to this billing software from within
PAID

w Integrate with Authentication

Elizabeth Bigelow 15-413 Software Engineering 7

JAMES Infrastructure

Domino
Servers

Configuration
Management

Server

Web
Servers

Elizabeth Bigelow 15-413 Software Engineering 8

CMU, continued

❖ Learning
w Investigate current state of the art

w Interface to existing learning algorithm (written in Lisp) and
adapt to PAID if necessary

w Utilize simulator built by TUM (utilizing strategy pattern)

w Write learning algorithms and test without recompilation of
PAID

w Incorporate learning algorithm from fall 15-413

❖ Network
w Investigate different telecommunication modes and protocols

for wireless and satellite communication

w Provide a state of the art investigation on networks

w Demonstrate disconnected operation and operation in the
context of failure

Elizabeth Bigelow 15-413 Software Engineering 9

Areas of Work for TUM

❖ Database
w Interface to Daimler Benz’ headquarter databases

w Integrate the updates algorithm from Ingo Schneider

❖ Learning
w Investigate the current state of the art

w Write a testbed for exploring different learning algorithms
(plug and play using different learning algorithms)

w Develop metrics and tests for characterizing the quality of
learning algorithms

❖ Authentication
w Provide a secure authentication system

Elizabeth Bigelow 15-413 Software Engineering 10

CORBA - Outline

❖ Where does CORBA come from?
w OMG (Object Management Group)

w OMA (Object Management Architecture)

w ORB (Object Request Broker)

w CORBA (Common Architecture for ORBs)

❖ What is CORBA?
w Why CORBA?

w Design Goals

w Status

❖ Using a CORBA service

❖ Structure of an Object Request Broker

❖ CORBA Interfaces and IDL

❖ Recommended Readings and References

Elizabeth Bigelow 15-413 Software Engineering 11

Where does this come from?

❖ Object Management Group (OMG)
w More than 750 software vendors, software developers and end

users

w Goal: Improve the development and use of integrated software
systems by supporting and encouraging modular production of
software , reuse of code, integration and long-term maintenance

w How? By providing a common architectural framework for
object oriented applications based on widely available
interface specifications

w Benefits
◆ Portability

◆ Reuse

◆ Interoperability

❖ Object Management Architecture (OMA)

Elizabeth Bigelow 15-413 Software Engineering 12

Object Management Architecture

❖ Focuses on managed objects
w Managed objects are subject to systemwide administration and

control.

w Managed objects are installed, activated and dynamically
controlled

❖ Managed objects are the primary building blocks of the
OMA object model
w Application objects

w Domain objects

w Object Services

w Common Facilities

Elizabeth Bigelow 15-413 Software Engineering 13

Object Management Architecture Components

❖ Application Domain-Specific Interfaces
w Non-standardized application-specific interfaces

❖ Domain-Specific Interfaces (added in 1996)
w Domain-specific interfaces

w Use for specific application domains, such as Finance,
Healthcare, Manufacturing and Telecom

❖ Common Facility Interfaces
w Interfaces for horizontal end-user-oriented facilities

w Use across application domains

❖ Object Services
w General purpose services that provide a universal application

domain-independent, basis for application interoperability

Elizabeth Bigelow 15-413 Software Engineering 14

OMA’s object model: Hierarchical view with
layers

Application Interfaces

Domain Interfaces

Common Facilities

Object Services

Network Operating System

Problem with this view: It does not show peer-to-peer property of
the OMA architecture

Elizabeth Bigelow 15-413 Software Engineering 15

Object Management Architecture: Canonical View

Elizabeth Bigelow 15-413 Software Engineering 16

Object Request Broker

❖ The Object Request Broker provides scalability for a
distributed object application

❖ Allows an object to call methods on objects independent
of the location of the objects (location-transparency,
location independence)
w Different process or different machine

w Think of Object-Oriented RPC (Remote Procedure Call) across
multiple languages and multiple platforms

❖ The ORB provides objects services as well as object
facilities. Primary difference between object services and
object facilities:
w Object services interoperate mostly with the ORB

w Object facilities operate mostly with application and domain
objects

❖ Standardizing ORBs: CORBA (“an instance of the class
ORB”)

Elizabeth Bigelow 15-413 Software Engineering 17

Introducing CORBA

❖ A specific standard interface for an Object Request Broker
w Common Object Request Broker Architecture

w Selected by the OMG in 1991

❖ The CORBA specification defines interfaces, not their
implementation

❖ Abstracts network services and OS services, making them
appear as objects within the ORB
w Does not hide the network or operating system, but allows

programmers to hide them

❖ CORBA supports multiple ORBs

❖ A CORBA object is an interface definition in the Interface
Definition Language (IDL)

❖ CORBA objects: CORBAservices, CORBAfacilities,
application objects, domain objects

Elizabeth Bigelow 15-413 Software Engineering 18

Why CORBA?

❖ How did we integrate distributed components before
CORBA?
w Sockets, Net DDE, DCOM, DCE RPC

❖ These technologies did not address key issues:
w Object-Oriented technologies (Java, C++)

◆ Sockets, RPC, etc don’t support objects

w Cross-platform, cross-language, multi-vendor support
◆ Try writing portable networking code with RPC sometime…

◆ No easy integration with legacy systems

w There is a need for “Common services”
◆ Security, transactions, persistence, events

◆ No need to reinvent these services (Build vs buy)

w Full location transparency (location independence)

Elizabeth Bigelow 15-413 Software Engineering 19

Design Goals of CORBA

❖ Hardware/OS/Network/Language independence
w Abstract definition of objects and types

w Open, vendor-neutral specification

❖ Location independence
w No knowledge necessary of where objects reside

w Object locations determined during deployment/installation
(after development)

❖ Implementation flexibility allows both
w Easy quick/dirty/simple implementations

w Full-strength fast, fault-tolerant, production-quality
implementations

w Developer can decide on quality of components

Elizabeth Bigelow 15-413 Software Engineering 20

CORBA Status

❖ CORBA 1.0 introduced in 1991
w Interface Definition Language (IDL)

w Basic Object Adapter (BOA)

❖ CORBA 2.0 finalized in 1996
w Internet Inter-Object Protocol (IIOP)

◆ Provides interoperability between different vendor ORBs

❖ CORBA/IIOP 2.1 finalized in 1997

❖ CORBA Services Specification (COSS)
w Naming Service, Event Service, Persistence, Security, Lifecycle,

etc

❖ CORBA Facilities
w User Interface, Information and System Management

Elizabeth Bigelow 15-413 Software Engineering 21

CORBAservices Overview

❖ CORBAservices are intrinsic part of the reference model

❖ CORBAservices come in 7 flavors
w Class management: Abilities to create, delete, modify, copy,

move, distribute, describe class definitions and class interfaces

w Instance management: Same as class management, minus
“distribute and describe”, plus: “invocation”

w Storage: Persistency for all sizes of objects, including attributes
and operations

w Integrity: Consistency both within and among objects, needed for
transactions.

w Security: Ability to define and enforce access control on objects

w Query: Use of a predicate to select objects

w Version: Ability to manage variant objects.

Elizabeth Bigelow 15-413 Software Engineering 22

CORBAfacilities Overview

❖ CORBAfacilities are optional (not part of the reference
model)

❖ Proposed facilities:
w Catalog and browser for objects and classes

w Link Manager

w Reusable user interface component

w Printing and spooling

w Error facilities

w Help facilities

w Mail facilities

w Computer-based training

w Information repository access

w Agents

w User preferences

Elizabeth Bigelow 15-413 Software Engineering 23

CORBA Application and Domain Objects

❖ Application and domain objects are on the same level as
CORBAfacilities

❖ Difference:
w CORBAfacilities are general services across many application

domains

w Application objects are reusable components within some
application domain

w Domain objects: Objects that are relevant to more than one
domain but perhaps not all applications

w Domain-specific objects are handled by the DTF (Domain-
specific task force). Special cases:

◆ Business Object Domain Task Force (BODTF)

◆ Financial Domain Task Force (FDTF)

Elizabeth Bigelow 15-413 Software Engineering 24

Structure of a CORBA application

Java
Client

C++
Client

Object

Bus

Database
Service

Security
Service

Application
Service

ORB

ORB

Elizabeth Bigelow 15-413 Software Engineering 25

IDL

❖ IDL is CORBA’s object contract language
w A language for expressing complex types called interfaces

❖ IDL is not a complete programming language
w No iterates or control flow

❖ The IDL compiler consists of two parts
w Front End

◆ Understands IDL syntax, creates intermediate representation

w Back End
◆ Understands the target language (C++, Java,..)

◆ Takes intermediate representation and produces language
specific source code

◆ Creates “stubs”: Client side stubs of the interface

◆ Creates “skeletons”: Server side stubs of the interface

Elizabeth Bigelow 15-413 Software Engineering 26

2 minute IDL primer

❖ IDL looks and smells like C++

❖ Types are familiar
w char, long

w do arrays with “sequence of <type>“

❖ Other stuff
w Exceptions - class that represents an “exceptional condition”

w Modules - allows encapsulation of naming (avoid clashes)

w in/out/input - Parameter passing foo

w Good IDL references is available

Elizabeth Bigelow 15-413 Software Engineering 27

IDL Compiler: From Object Model to Target Code

Box

content: integer

CORBA
Object

(in UML)

IDL
Interface

interface Box
{
 attribute short content;
};

Java
Class

C++
Class

C Code

Elizabeth Bigelow 15-413 Software Engineering 28

IDL Type Mappings

❖ C Mapping in all specifications since CORBA 1.1

❖ C++ Mapping is part of CORBA 2.0 specification

IDL C Mapping C++ Mapping
char signed char signed char

octet unsigned char unsigned char

boolean unsigned char unsigned char

enum enum enum

any typedef struct any { class Any {

TypeCode _Type;;

voide * _value; };

} any;

Elizabeth Bigelow 15-413 Software Engineering 29

Structure of an Object Request Broker

Elizabeth Bigelow 15-413 Software Engineering 30

Structure of an Object Request Broker (2/24/98)

Local
client
object

Implementation side
equivalent of stub

(method call with no
implementation)

BOA

Elizabeth Bigelow 15-413 Software Engineering 31

Proxy Objects, Marshaling, Unmarshaling

❖ Goal: When IDL definitions are compiled by the IDL
compiler, code is generated that allows an operation to be
invoked as if it were a method on a local object

❖ Marshaling:
w Conversion of programming language data types into a format

ready for transmission on a lower layer (physical layer). Done
by stub code

❖ Proxy object:
w An object, in which all methods are forwarded such that they

are received by the (possible remote) object implementation

w Each stub code implements a set of proxy objects for a specific
IDL interface

❖ Unmarshaling:
w The inverse of marshaling. Conversion possibly into a data

type in a different language. Done by the skeleton code

Elizabeth Bigelow 15-413 Software Engineering 32

BOA

❖ Needed because the ORB Core is free to be implemented in a variety
of ways, adapter interfaces are defined to provide standard
interfaces to servers

❖ There is currently only one standard Object Adapter defined in
CORBA 2:

❖ Basic Object Adapter
w Basic was supposed to mean minimal, but BOAs are quite complicated

❖ The BOA is involved with various parts of a CORBA object’s
lifecycle: creation, destruction, activation and deactivation.

❖ BOA operations
w Object creation and deletion

w Obtain the principal associated with a client request

w Signal whether an implementation is ready or not

❖ A BOA has a IDL interface

Elizabeth Bigelow 15-413 Software Engineering 33

Invoking a CORBA interface

❖ Two methods: Static (with IDL) or Dynamic (with DII)

❖ Static; looks like normal method/procedure call
w In Java, simply “import” object definition

w In C++, #include header and link with library

w Find object on ORB
◆ Variety of methods, some vendor-specific

◆ Naming services provide powerful object lookup

w “bind” to the desired object

w Finally, use object like any other!

❖ Dynamic Invocation Interface (DII)
w Query Interface repository about arguments and operations

w manually build up argument list

Elizabeth Bigelow 15-413 Software Engineering 34

Dynamic Invocation Interface

❖ In IDL all objects are defined at compilation time.
w Allows good code optimization

w No overhead at run time

❖ Sometimes IDL is too restrictive. The dynamic invocation
interface (DII) allows to make requests on objects that are
unknown at implementation time

❖ Advantages of DII over IDL:
w Ideal for software development based on prototyping

w Takes less than 80% of compiled IDL code

w New objects do not require recompilation of existing code

Elizabeth Bigelow 15-413 Software Engineering 35

Interface and Implementation Repositories

Elizabeth Bigelow 15-413 Software Engineering 36

Repository

❖ A repository is a service, that when presented with a
query, returns some object of information

❖ In many aspects, a repository is like a database
w lighter-weight, because it needs to support only a specific

application

w Flat files or a dynamically linked library could form a CORBA
repository

❖ CORBA specification mentions two repositories:
w Interface repository:

◆ Registry of fully qualified interface definitions. Can be browsed
by the Dynamic Invocation Interface client to construct
invocations on an interface

w Implementation repository:
◆ Currently not well defined. Basic Idea: Implementations provide

information such that they can be invoked. Not clear whether
more than a path in the local file system is necessary.

Elizabeth Bigelow 15-413 Software Engineering 37

Creating a CORBA Application

❖ Perform object-oriented analysis and design of system

❖ Generate IDL from the object model
w Define “interfaces” for objects

w Define structures, types, exceptions

❖ Map IDL files into client code and server stubs
w Generated client code contains mechanism for communicating

with servers
◆ Marshalling (“translating a type to bits on the wire”), transport,

conversions, etc.

w Server stubs must be implemented
◆ Often via inheritance (C++, Java)

Elizabeth Bigelow 15-413 Software Engineering 38

Creating a CORBA object (service, facility,
application object)

❖ Interface defined by IDL
w Interface Definition Language

w Defines behavior, not
implementation

❖ Implemented by…
w Java/C++ code

w Mapped to a database

w Linked to a legacy system

❖ CORBA service maps:
w from client language types

w to CORBA-neutral types

w to implementation types
◆ e.g. Java classes

w And back again..

❖ To the client, the service appears to
be written in the native language

Database Service
store()

retrieve()
delete()

Interface Definition

class DatabaseImplementation
{
 public store() { …}
 public retrieve() {…}
 public delete() {…}
}

implemented by

Elizabeth Bigelow 15-413 Software Engineering 39

CORBA Development Process

❖ Write IDL code that describes the interfaces to objects
running on different platforms or implemented in
different languages

❖ Compile the interfaces with the IDL compiler
w This produces stubs and skeleton code

❖ Write code to initialize the ORB and informa it of any
CORBA objects that are created

❖ Compile all the generated code

❖ Run the distributed application

Elizabeth Bigelow 15-413 Software Engineering 40

Using CORBA: Setting up a Service

 public static void main(String[] args) {

 // initialize the Object Request Broker

 ORB orb = ORB.init();

 // initialize the Basic Object Adapter (BOA)

 BOA boa = orb.BOA_init();

 // instantiate the CORBA Object “MyServer”

 MyServer srvr = new MyServerImpl(”MyServer");

 // tell the BOA (ORB) that the CORBA object is ready

 boa.obj_is_ready(srvr);

 // tell the BOA (ORB) that “MyServer” is ready to accept requests

 boa.impl_is_ready();

 }

Elizabeth Bigelow 15-413 Software Engineering 41

UML Model of the Object Request Broker
 ORB

object_to_string()
string_to_object()
BOA_init()
...

Dynamic
 Invocation
Interface

IDL Stubs
(Static Stub
Interface)

ORB
Interface

IDL Skeleton
(Static Skeleton

Interface)

Dynamic
Skeleton
Interface

Object
Adapter

ORB
Core

accesses

* * *

Interface
Repository

ORB
Agent

launches

queries

Daemon
Process

Elizabeth Bigelow 15-413 Software Engineering 42

Data Dictionary for ORB object model

❖ IDL Stubs- The code generated for a specific IDL interface to allow
static invocation of that interface. Linked into a CORBA client

❖ IDL Skeleton - The code generated for a specific IDL interface.
Linked into a CORBA object implementation

❖ Dynamic Invocation Interface - Allows invocations of CORBA
operations without IDL stubs

❖ Dynamic Skeleton Interface - Interface that allows interpretation of
requests to a server for types that were not known at compile time

❖ ORB Interface - Interface offering miscellaneous services from the
ORB to clients and servers

❖ ORB agent - Locates and launches servers; facilitates client
communication with servers

❖ Object Adapter - Capable of activating servers whose objects are
required by invocations. (After a server is ready it must inform the
Object Adapter that its objects can receive requests).

❖ Interface Repository - Stores operations and parameter types of
CORBA objects for discovery.

Elizabeth Bigelow 15-413 Software Engineering 43

CORBA Pitfalls

❖ Object instances are never passed across the network
w Instances contain platform-specific code

w Only references are passed
◆ Current discussion in OMG to pass objects

w How do I transmit data?
◆ Use structures for transmitting data types

❖ Don’t break encapsulation!
w Don’t pass pointers, directory names, etc.

w Don’t pass any language or platform specific information

❖ Making interfaces generic is difficult
w Design, rethink, redesign...

Elizabeth Bigelow 15-413 Software Engineering 44

More CORBA Pitfalls

❖ Integration with other tools problematic
w CORBA types automatically generated

◆ If another tool needs to process the types, you’re out of luck

❖ Data types are scalars and sequences of scalars only
w No references to other structures

◆ That is, no C++ pointers or Java object references

❖ Build environment for CORBA application is complex
w Lots of classes, directories, processes, etc

w Need “make”, powerful editor, decent shell

Elizabeth Bigelow 15-413 Software Engineering 45

Other Observations on CORBA

❖ CORBA concepts take getting used to
w Developing distributed systems is not easy the first time

w CORBA will make things much easier once you learn it

w Good documentation is freely available

❖ CORBA vs DCOM?
w Andreesen says IIOP (CORBA protocol) will replace HTTP

w Many companies moving to distributed systems are starting to
use CORBA

w CORBA has widespread industry support

w Microsoft has agreement with IONA to provide CORBA
interface to DCOM

Elizabeth Bigelow 15-413 Software Engineering 46

Java Applets as CORBA clients
❖ Interface engineering exercise:
w Take an existing standalone application and make it available

on the Web

❖ Currently a hot topic

❖ Major Problems:
w Java’s security model: Applets are only allowed to open

network connections to the host from which they have been
downloaded (the identification is based on IP numbers)

◆ Goal: Prevent untrusted applets, prevent viruses, ensure privacy,...

◆ Java’s security model is in conflict with CORBA’s goal to allow
clients to invoke operations on objects regardless of their physical
location (location transparency)

– Security model currently under discussion

w Firewalls: Restrict the communication between an intranet and
the Internet.

◆ CORBA’s 2.0 IIOP protocol used for intra-ORB communication is
TCP/IP based

Elizabeth Bigelow 15-413 Software Engineering 47

Problem: Applets accessing Legacy Systems

1. Customer wants to buy Laptop

2. Java Applet tries to access Company’s
Database

Company Database
as CORBA object

3. The buy() method cannot directly be
invoked unless the applet is
downloaded from the Database Server

Skeleton Interface(IDL)

buy()

Database Server
(“Legacy System”)

in COBOL

Elizabeth Bigelow 15-413 Software Engineering 48

HTTP Tunneling

❖ The applet issues a method call on a CORBA object
residing on a different host

❖ The applet request is put into an HTTP envelope (HTTP
can go through firewalls)

❖ The applet request is sent to an object called Gatekeeper
residing on the host from which the applet was
downloaded.

❖ The Gatekeeper forwards the request to the host
nominated in the object reference.

Result: HTTP tunneling reestablishes CORBA location
transparency for Java applets

❖ The applet issues a method call on a CORBA object
residing on a different host

❖ The applet request is put into an HTTP envelope (HTTP
can go through firewalls)

❖ The applet request is sent to an object called Gatekeeper
residing on the host from which the applet was
downloaded.

❖ The Gatekeeper forwards the request to the host
nominated in the object reference.

Result: HTTP tunneling reestablishes CORBA location
transparency for Java applets

Elizabeth Bigelow 15-413 Software Engineering 49

Solution: Web-Based Applets using HTTP Tunneling

1. Customer wants to buy Laptop

2. Java Applet tries to access Company’s
Database

Company Database
as CORBA object

Skeleton Interface(IDL)

buy()

Database Server
(“Legacy System”)

in COBOL

WWW
 Server Gatekeeper

3. Send Buy() method
wrapped in HTTP

packet

0. Download Applet

HTTP

IIOP4. Forward Request
to Database

Elizabeth Bigelow 15-413 Software Engineering 50

RMI vs. CORBA

• CORBA presumes a heterogeneous,
multilanguage environment.

• RMI lets pass objects by value

• RMI uses Java as both an interface
definition language and as an
implementation language

• RMI uses URL-based naming scheme

CORBA vs RMI

Elizabeth Bigelow 15-413 Software Engineering 51

Caffeine

❖ Offered by Visigenic’s Visibroker

❖ A Java solution for CORBA developers

❖ Developers write ordinary Java classes using RMI-like
semantics to make them remote

❖ Java2IIOP takes Java interface files and produces IIOP-
compliant stubs and skeletons

❖ Java2IDL takes Java code and produces CORBA IDL

Caffeine

Elizabeth Bigelow 15-413 Software Engineering 52

CORBA Implementations

❖ Visibroker by Visigenic
w http://www.visigenic.com/

w Licensed for Netscape 4

❖ Object-Broker by Digital
w http://www.digital.com/info/o

bjectbroker/

❖ Orbix by IONA
w http://www.iona.com/

❖ SOM by IBM
w http://www.software.ibm.com

/ad/somobjects/

❖ Sun’s NEO
w http://www.sun.com/software/

neo

❖ Orb Plus by HP
w http://www.hp.com/gsy/orbpl

us.html

❖ Power-Broker by Expersoft
w http://www.expersoft.com/

❖ DAIS by ICL
w http://www.iclsoft.com/sbs/da

ismenu.html

Elizabeth Bigelow 15-413 Software Engineering 53

JAVA ORB Products

❖ Visigenic’s Visibroker for Java
w Released April 1996, CORBA 2.0 compliant, Provides CORBA Naming

and Event Services in Java

w CORBA location transparency via HTTP tunneling

❖ Iona’s OrbixWeb
w Released July 1996

w CORBA location transparency via the “Wonderwall”

❖ Sun’s Joe
w Released July 1996, supports a number of protocols (Door, NEO as

well as IIOP)

w CORBA location transparency via a patch to the Apache HTTP server.

w IBM has licenses Joe

❖ CORBAnet
w Internet-based showcase demonstrating ORB interoperability

w Java ORBs in action: http://www.corba.net

Elizabeth Bigelow 15-413 Software Engineering 54

Recommended Readings

❖ Client-Server Programming with Java and Corba,
Authors: Orfali and Harkey, John Wiley & Sons, 1997

❖ Instant CORBA, Authors: Orfali, Harkey and Edwards,
John Wiley & Sons, 1997

❖ The CORBA Reference Guide, Author: Alan Pope,
Addison Wesley, 1998

❖ CORBA Design Patterns, Authors: Mowbray and
Malveau, John Wiley & Sons, 1998

❖ Java Programming with CORBA, Authors: Andreas
Vogel, Keith Duddy, John Wiley & Sons, 1998

❖ Java Network Programming. Author: Elliotte Rusty
Harold. 1st edition. O’Reilly, 1997.

❖ Other CORBA-related books and magazines
w http://www.omg.org/news/begin.htm#books

Elizabeth Bigelow 15-413 Software Engineering 55

References

❖ Object Management Group (OMG)
w Official documentation, links

w http://www.omg.org

❖ Distributed Systems Technology Center (DSTC)
w General distributed-OO technology info, plus CORBA

w http://www.dstc.edu.au

❖ Good CORBA papers, tutorials, examples
w http://siesta.cs.wustl.edu/~schmidt/corba.html

