
October 12, 1998

DRAFT - DO NOT DISTRIBUTE

9. Rationale

“Don’t keep doing what doesn’t work.”

– Anonymous

Rationale is the justification of decisions. The models we have described until now represent 
the system. Rationale models represent the reasoning that lead to the system, including its 
functionality and its implementation. Rationale includes:

• the issues they address,

• the alternatives that were considered,

• the decisions that were made to resolve the issues, 

• the criteria that were used to guide decisions, and

• the debate developers went through to reach a decision.

In the context of change, rationale is the most important information in the development 
process. For example, when requirements change and functionality is added to the system, 
the rationale enables developers to track which decisions need to be revisited and which 
alternatives have already been evaluated. When new staff is assigned to the project, new 
developers can become familiar with past decisions by accessing the rationale of the system.

Unfortunately, rationale is also the most complex information developers generate, and 
thus, the most difficult to maintain and update. Moreover, capturing rationale and 
maintaining it up to date represents an up front investment with long term returns. In this 
chapter we describe issue-modeling, a representation for modeling rationale. We then 
describe the activities of creating, maintaining, and accessing rationale models. We conclude 
this chapter by describing management issues related to maintaining rationale models.



Introduction: a meat loaf example DRAFT-DO NOT DISTRIBUTE

2 of 52 Rationale

9.1. Introduction: a meat loaf example

System models are abstractions of what the system does. The requirements analysis model, 
including the use case model, the use case model, and the sequence diagrams (see 
Chapter 6, Requirements Elicitation and Chapter 7, Requirements Analysis) represents the 
behavior of the system from the user’s point of view. The system design model (see 
Chapter 8, System Design) represents the system in terms of subsystems, design goals, 
hardware nodes, data stores, access control, and so on. The rationale model represents why 
a given system is structured and behaves the way it does.1 Why should we capture the why? 
Consider the following example:2

Developers and cooks are good at disseminating new practices and techniques. The 
rationale behind these techniques, however, is usually lost, making it difficult to improve 
them as their application context changes. The year 2000 bug is such an example: in the 
sixties and seventies, memory costs drove developers to represent information as compactly 
as possible. For this reason, the year was often represented with two characters instead of 
four (e.g., ‘1998’ was represented as ‘98’). The assumption of the developers was that the 
software would only be used for a few years. Arithmetic operations on years represented 
with two digits assumes that all dates are within the same century. Unfortunately, this 
shortcut breaks down at the turn of the century for software performing arithmetic on two 
digit years. For example, when computing the age of a person, a person born in 1949 will be 
considered 01 - 49 = -48 years old in 2001. The practice of encoding years with two digits 
became standard, even after memory prices dropped significantly and the year 2000 came 

1. Historically, much research about rationale focuses on design and, hence, the term design rationale is most 
often used in the literature. Instead, we use the term rationale to avoid confusion and to emphasize that 
rationale models can be used during all phases of development.

Mary asks John, her husband, why he always cuts off both ends of the meat loaf before putting it in 
the oven. John responds that he is following his mother’s recipe and that he had always see her cut 
the ends of the loaf. He never really questioned the practice and thought it was part of the recipe. 
Mary, intrigued by this answer, calls her mother in law to find out more about this meat loaf recipe.

Ann, John’s mother, provides more details on the meat loaf cutting, but no culinary justification: she 
says that she has always trimmed about an inch off each end of the loaf as her mother did, 
assuming it had something to do with improving the taste.

Mary continues her investigation and calls John’s maternal grandmother, Zoe. At first, Zoe is very 
surprised: she does not cut the ends of the meat loaf and she cannot imagine how such practice 
could possibly improve the taste. After much discussion, Zoe eventually remembers that, when 
Ann was a little girl, she used to cook on a much narrower stove which could not accommodate 
standard sized meat loaves. To work around this problem, she used to cut off about an inch from 
each end of the loaf. She stopped this practice once she got a wider stove.

2. Adapted for this chapter, original author unknown.



Introduction: a meat loaf example  DRAFT - DO NOT DISTRIBUTE

Rationale 3 of 52

nearer. Moreover, new systems needed to be backward compatible with older ones. For 
these reasons, many systems delivered as late as the nineties still have 2000 year bugs.

Rationale models enable developers and cooks to deal with change, such as larger stoves or 
cheaper memory prices. Capturing the justification of decisions effectively models the 
dependencies between starting assumptions and decisions. When assumptions change, 
decisions can be revisited. In this chapter, we describe techniques for capturing, 
maintaining, and accessing rationale models. In this chapter, we 

• provide you with a bird view of the activities related with rationale models 
(Section 9.2),

• describe issue modeling, the technique we use for representing rationale 
(Section 9.3),

• detail the activities necessary for creating and accessing rationale models 
(Section 9.4), and

• describe management issues related with maintaining rationale models (Section 9.5).

First, let us define the concept of rationale model.



An overview of rationale DRAFT-DO NOT DISTRIBUTE

4 of 52 Rationale

9.2. An overview of rationale

A rationale is the motivation behind a decision. More specifically, it includes:

• Issue. To each decision correspond an issue that needed to be solved for the 
development to proceed. An important part of the rationale is a description of the 
specific issue that is being solved. Issues usually phrased as questions: How should a 
meat loaf be cooked? How should years be represented?

• Alternatives. Alternatives are possible solutions that could address the issue under 
consideration. These include alternatives that were explored but discarded because 
they did satisfy with one or more criteria. For example, buying a wide stove costs too 
much. Representing years with a binary sixteen bit number requires too much 
processing.

• Criteria. Criteria are desirable qualities that the selected solution should satisfy. For 
example: A recipe for meat loaf should be realizable on standard kitchen equipment. 
Developers in the sixties minimized memory foot print. During requirements 
analysis, criteria are nonfunctional requirements and constraints (e.g., usability, 
number of input errors per day). During system design, criteria are design goals (e.g., 
reliability, response time). During project management, criteria are management 
goals and trade-offs (e.g., timely delivery vs. quality).

• Argumentation. Cooking and software development decisions are not algorithmic. 
Cooks and developers discover issues, try solutions, and argue their relative benefits. 
It is only after much argumentation that a consensus is reached or a decision 
imposed. This argumentation, including argumentation on the criteria, the 
justifications, the explored alternatives, and the trade-offs to be made is part of the 
rationale.

• Decisions. A decision is the resolution of an issue, it represents the selected 
alternative according to the criteria that were used for evaluation and the justification 
of the selection. Cutting an inch off each end of a meat loaf and representing years 
with two digits are decisions. Decisions are already captured in the system models 
we develop during requirements analysis and system design. Moreover, many 
decisions are made without exploring alternatives or examining the corresponding 
issues.

We make decisions throughout the development process, and thus, we can use rationale 
models during any development activity:

• During requirements elicitation and requirements analysis, we make decisions about the 
functionality of the system, most often with the client. Decisions are motivated by 
user or organizational needs. The justification of these decisions is useful for creating 
test cases during system integration and user acceptance.



An overview of rationale  DRAFT - DO NOT DISTRIBUTE

Rationale 5 of 52

• During system design, we select design goals and design the subsystem 
decomposition. When identifying design goals, for example, we often base our 
decision on nonfunctional requirements. Capturing the rationale of these decisions 
enables us to trace dependencies between design goals and nonfunctional 
requirements. This allows us to revise the design goals when requirements change. 

• During project management, we make assumptions about the relative risks present in 
the development process. We are more likely to start development tasks related to a 
recently released component as opposed to a mature one. Capturing the justifications 
behind the risks and the fallback plans enable us to better deal when these risks 
become actual problems. 

• During integration and testing, we discover interface mismatches between subsystems. 
Accessing the rationale for the subsystems, we can often determine which change or 
assumption introduced the mismatch and correct the situation with minimal impact 
on the rest of the system.

Maintaining rationale is an investment of resources for dealing with change: we capture 
information now in order to make it easier to revise decisions later, when changes occur. The 
amount of resources we are willing to invest depends on the type of project. 

If we are building a complex system for a single customer, we will most likely revise and 
upgrade the system several times over a long period. In this case, the client may even 
require that rationale be recorded. If we are building a conceptual prototype for a new 
product, we will most likely throw the prototype once the product development is 
approved and underway. If we divert development resources to record rationale, we risk 
delaying the demonstration of the prototype and face the project cancellation altogether. In 
this case, we do not record rationale since the return on such an investment would be 
minimal. 

More generally, we distinguish four levels of rationale capture:

• No explicit rationale capture. Resources are spent only on development. The 
documentation focuses on the system models only. Rationale information is present 
only in the developers’ memories and in communication records such as email 
messages, memos, and faxes.

• Rationale reconstruction. Resources are spent in recovering design rationale during the 
documentation effort. The design criteria and the motivation behind major 
architectural decisions is integrated with the corresponding system models. 
Discarded alternatives and argumentation are not captured explicitly.

• Rationale capture. Major effort is spent in capturing rationale as decisions are made. 
Rationale information is documented as a separate model and cross referenced with 
other documents. For example, the motivation for the requirements analysis model is 
captured in the Requirements Analysis Rationale Document (RARD), complementing 



An overview of rationale DRAFT-DO NOT DISTRIBUTE

6 of 52 Rationale

the Requirements Analysis Document (RAD). Similarly, the motivation for the system 
design is captured in the System Design Rationale Document (SDRD).

• Rationale integration. The rationale model becomes the central model developers use. 
Rationale produced during different phases are integrated into a live and searchable 
information base. Changes to the system occur first in the information base as a 
discussion followed by one or more decisions. The system models represent the sum 
of the decisions captured in the information base.

In the first two levels of rationale capture, No explicit rationale capture and Rationale 
reconstruction, we rely on developers memory to capture and store rationale. In the last two 
levels, Rationale capture and Rationale integration, we invest resources into constructing an 
corporate memory that is independent from the developers. The trade-off between these 
two extremes is the investment of resources during the early phases of development. In this 
chapter, we focus on the last two levels of rationale capture.

In addition to long term benefits, maintaining rationale can also have short term positive 
effects: making explicit the rationale of a decision enables us to understand better the 
criteria others follow. It also encourages us to take rational decisions instead of emotional 
ones. If nothing else, it helps us distinguish which decisions were carefully evaluated and 
which were made under pressure and rushed.

Rationale models represent a larger and faster changing body of information than the 
system models. This introduces issues related to complexity and change as we have seen 
previously. Hence, we can apply the same modeling techniques for dealing with complexity 
and change. Next, we describe how we represent rationale with issue models.



Issue modeling  DRAFT - DO NOT DISTRIBUTE

Rationale 7 of 52

9.3. Issue modeling

In this section, we describe issue models, the representation we use for rationale. Issue 
modeling is based on the assumption that design occurs as a dialectic activity during which 
developers solve a problem by arguing the pros and cons of different alternatives. We can 
then capture rationale by modeling the argument that lead to the development decisions. 
We represent:

• a question or a design problem as an issue node (Section 9.3.2),

• alternative solutions to the problem as proposal nodes (Section 9.3.3),

• pros and cons of different alternatives using argument nodes (Section 9.3.4), and

• decisions we make to resolve an issue as a resolution node (Section 9.3.5).

In Section 9.3.7, we survey several issue representations of historical significance. But first, 
let us talk about central traffic control, the domain for the examples in this chapter.

9.3.1.  Central traffic control

Central traffic control (CTC) systems enable train dispatchers to monitor and route trains 
remotely. Train tracks are divided into contiguous track circuits which represent the smallest 
unit a dispatcher can monitor. Signals and other devices ensure that at most one train can 
occupy a track circuit at any time. When a train enters a track circuit, a sensor detects its 
presence and the train identification appears on the dispatcher’s monitor. The dispatcher 
operates switches to route trains. The system enables a dispatcher to plan a complete route 
by aligning a sequence of switches in the corresponding position. The set of track circuits 
controlled by a single dispatcher is called a track section. Usually, a single dispatcher 
accesses a given track section at once.

Figure 9-1 is a simplified display of a CTC user interface. Track circuits are represented by 
lines. Switches are represented by the intersection of three lines. Signals are represented 
with icons indicating whether a signal is open (i.e., allowing a train to pass) or closed (i.e., 
forbidding a train to pass). Switches, trains, and signals are numbered for reference in 
commands issued by the dispatcher. In Figure 9-1, signals are numbered S1 through S4, 
switches are numbered SW1 and SW2, and trains are numbered T1291 and T1515. Computers 
near the tracks, called wayside stations, ensure that the state of a group of switches and 
signals do not present any safety hazard. For example, a wayside station controlling the 
devices of Figure 9-1 ensures that opposing signals, such as S1 and S2, cannot be open 
simultaneously. Wayside stations are designed such that the state of the device they control 
is safe even in the case of failure. Such equipment is called fail-safe. CTC systems 
communicate with wayside stations to modify the state of the tracks when dispatching 



Issue modeling DRAFT-DO NOT DISTRIBUTE

8 of 52 Rationale

trains. CTC systems are typically highly available but need not be fail-safe, given that the 
safety of trains is guaranteed by the wayside stations.

In the sixties, CTC systems had a custom display board containing light bulbs displaying 
the status of the track circuits. Switches and signals were controlled via an input board with 
many push buttons and toggle switches. In the seventies, CRTs replaced the custom boards 
and provided dispatchers more detailed information with less real estate. More recently, 
workstation-based traffic control systems have been introduced, offering the possibility of a 
more sophisticated user interface to dispatchers and the ability to distribute processing 
among multiple computers.

Central traffic control systems need to be highly available. Although traffic control systems 
are not life critical (safety is ensured by wayside stations), a failure of the system can lead to 
major traffic disruption in the controlled tracks, thus resulting in a substantial economic 
loss. Consequently, the transition to a new technology, such as moving from a mainframe to 
a workstation environment or moving from a textual interface to a graphical user interface, 
needs to be carefully evaluated and done much more slowly than for other systems. Traffic 
control is a domain in which capturing rationale is critical, and thus, serves as the basis for 
the examples of this chapter.

Let us discuss next how issue models are used to represent rationale.

FIGURE 9-1. An example of a CTC track section display (simplified for this example).

T1291>

<T1515

Signals

Track circuits

Switches

Trains

S1

S2 S3

S4

SW1 SW2



Issue modeling  DRAFT - DO NOT DISTRIBUTE

Rationale 9 of 52

9.3.2.  Defining the problem: issues

An issue represents a concrete problem, such as a requirement, a design, or a management 
problem. How soon should a dispatcher be notified of a train delay? How should persistent data be 
stored? Which technology presents the most risk? Issues most often represent problems that do 
not have a single correct solution and that cannot be resolved algorithmically. Issues are 
typically resolved through discussion and negotiation.

We represent issues in UML with instances of class Issue. Issues have a subject attribute, 
summarizing the issue, a description attribute, describing the issue in more detail and 
referring to supporting material, and a status attribute, indicating whether the issue has 
been resolved or not. The status of an issue is open if it has not be resolved yet and closed 
otherwise. A closed issue can be re-opened if an issue needs to be revisited. By convention, 
we give a short name to each issue, such as train delay?:Issue for reference. For 
example, Figure 9-2 depicts the three issues we gave as example in the previous paragraph.

Issues raised during development are often related. For example, issues can be decomposed 
into smaller subissues. What are the response time requirements of the traffic control system? 
includes How soon should a dispatcher be notified of a train delay? The complete system 
development can be phrased as a single issue: Which traffic control system should we build? 
that can then be decomposed into numerous subissues. Issues can also be raised by 
decisions made on other issues. For example, the decision to cache data on a local node 
raises the issue of maintaining consistency between the central and cached copies of the 
data. Such issues are called consequent issues.

Consider the central traffic control system we previously described. Assume, we are 
currently examining the transition from a mainframe system to a desktop based system. In 

train delay?:Issue How soon should a dispatcher be notified of a train delay?

storage?:Issue How should persistent data be stored?

technology risk?:Issue Which technology presents the most risk?

FIGURE 9-2.  An example of issues. (UML object diagram).

train delay?:Issue

storage?:Issue
technology risk?:Issue



Issue modeling DRAFT-DO NOT DISTRIBUTE

10 of 52 Rationale

the future system, each dispatcher will have an individual desktop machine which 
communicates with a server which manages the communication with field devices. During 
design discussions, two interface issues are raised: How should commands be input to the 
system? and How should track circuits displayed to the dispatcher? Figure 9-3 depicts two issues 
represented with a UML object diagram. 

An issue should only focus on the problem, not possible alternatives addressing it. A 
convention that encourages this is to phrase issues as questions. To reinforce this concept, 
we also include a question mark at the end of the issue name. Information about the 
possible alternatives addressing an issue are captured by proposals, which we discuss next.

9.3.3.  Exploring the solution space: proposals

A proposal represents a candidate answer to an issue. A dispatcher need not be notified is a 
proposal to the issue How soon should a dispatcher be notified of a train delay? A proposal need 
not be a good or valid answer to the issue it addresses. This enables developers to explore 
the solution space thoroughly. Often when brainstorming, proposing a flawed solution 
triggers new ideas and solutions which would not have be thought of otherwise. Different 
proposals addressing the same issue can overlap. For example, proposals to the issue How to 
store persistent data? could include Use a relational database and Use a relational database for 
structured data and flat files for images. Proposals are used to represent the solution to the 
problem as well as the discarded alternatives.

A proposal can address one or more issues. For example, Use a Model/View/Dispatcher 
architecture can address How to separate interface objects from entity objects? and How to 
maintain consistency across multiple views? Proposals can also trigger new issues. For example, 
in response to the issue How to minimize memory leaks? the proposal Use garbage collection 
may trigger the consequent issue How to minimize response time degradation due to memory 
management? When we address an issue, we need to ensure that all consequent issues 
associated with the selected proposals are addressed as well.

input?:Issue How should the dispatcher input commands?

display?:Issue How should track sections be displayed?

FIGURE 9-3.  CTC interface issues. (UML object diagram).

display?:Issueinput?:Issue



Issue modeling  DRAFT - DO NOT DISTRIBUTE

Rationale 11 of 52

We represent proposals in UML as instances of the class Proposal. Proposals, like Issues, 
have a subject and a description attributes. By convention, we give proposals a short 
name and phrase them as a statement starting with a verb. Proposals are related to the 
Issues they address with an addressed by association. Issues are related to Proposals 
that triggered them with a raises association. 

While discussing the interface issues of our central traffic control system, we consider two 
proposals, a point & click interface, which allows track circuits to be represented 
graphically, and a text-based interface, in which track sections are represented with 
special characters. The text-based proposal raises a consequent issue about which 
terminal emulation to use. Figure 9-4 depicts the addition of the two proposals and the 
consequent issue.

A proposal should only contain information related to the solution, not its value, 
advantages, and disadvantages. Criteria and arguments are used for this purpose. We 
describe these next.

point&click:Proposal The interface for the dispatcher could be realized with a point&click 
interface.

text only:Proposal The display used by the dispatcher can be a text only display with 
graphic characters to represent track segments.

terminal?:Issue Which terminal emulation should be used for the display?

FIGURE 9-4.  An example of proposals and consequent issue. (UML object diagram).

addressed byaddressed byaddressed by

raises

text-based:Proposal point&click:Proposal

display?:Issueinput?:Issue

terminal?:Issue



Issue modeling DRAFT-DO NOT DISTRIBUTE

12 of 52 Rationale

9.3.4.  Evaluating the solution space: criteria and arguments

A criterion is a desirable quality that proposals addressing a specific issue should have. 
Design goals, such as response time or reliability, are criteria used for addressing design 
issues. Management goals, such as minimum cost or minimum risk, are criteria used in 
addressing management issues. A set of criteria indicates the dimensions against which 
each proposal needs to be assessed. A proposals that meets a criterion is said to be assessed 
positively against that criterion. Similarly, a proposal that fails to meet a criterion is said to 
be assessed negatively against that criterion. Criteria may be shared among several issues.

We represent criteria in UML as instances of the Criterion class. Criteria, like Issues 
and Proposals, have a subject and a description attribute. The subject attribute is 
always be phrased positively, that is, state the quality that proposals should maximize. Fast, 
responsive, and cheap are good subject attributes. Cost and time are not. Criteria are 
associated to Proposals with assessment associations. Assessment associations have a 
value attribute whether the assessment is positive or negative, and a weight attribute, 
indicating its strength of the proposal with respect to the criterion. By convention, we 
append a $ sign to the end of a criterion name, emphasizing that criteria are goodness 
measures and should not be confused with arguments or issues.

While evaluating the interface of our central traffic control system, we identify two criteria, 
availability, which represents the nonfunctional requirement to maximize the up time of the 
system, and usability, which represents (in this case) the nonfunctional requirement to 
minimize the time to input valid commands (see Figure 9-5). These criteria are taken from 
the nonfunctional requirements of the system. We assess both proposals against these 
criteria: we decide that the point and click interface is negatively assessed against the 
availability criteria, being more complex than the text interface, and thus, presenting a 
higher likelihood of bugs. We decide, however, that the point and click interface is more 
usable than the textual interface, due to an easier selection of commands and input of data. 
Note that the set of associations linking the proposals and the criteria in Figure 9-5 represent 
a trade-off: each proposal maximizes one of the two criteria, the issue is to decide which 
criteria has a higher priority. 



Issue modeling  DRAFT - DO NOT DISTRIBUTE

Rationale 13 of 52

An argument is an opinion expressed by a person, agreeing or disagreeing with a proposal, 
a criterion, or an assessment. Arguments capture the debate that drives the exploration of 
the solution space, defines the goodness measures, and eventually leads to a decision. We 
represent arguments in UML with instances of the class Argument including subject and 
description attributes. Arguments are related to the entity they discuss with a 
is supported by or an is opposed by association. 

While discussing the relative priority of the availability and usability criteria, we decide that 
any benefit on the usability aspect would be offset by a reduced availability of the system. 
We capture this by creating an argument that supports the availability criterion (see 
Figure 9-6). Note that an argument can simultaneously support a node while opposing 
another.

availability$:Criterion The traffic control system should have at least a 99% availability.

usability$:Criterion The time to input commands should be less than two seconds.

FIGURE 9-5.  An example of criteria and assessments. (UML object diagram). A negative 
assessment is indicated by an association labeled fails while positive assessments are 
indicated with an association labeled meets.

display?:Issue

availability$:Criterionusability$:Criterion

terminal?:Issue

addressed byaddressed byaddressed by

raises meets

fails

meets

fails

input?:Issue

point&click:Proposaltext-based:Proposal



Issue modeling DRAFT-DO NOT DISTRIBUTE

14 of 52 Rationale

When selecting criteria, assessing proposals, and arguing about them, we evaluate the 
design space. The next step is to use this evaluation to come to closure and resolve the issue.

9.3.5.  Collapsing the solution space: resolutions

A resolution represents the alternative selected to close an issue. A resolution represents a 
decision and has an impact on one of the system models or on the task model. A resolution 
can be based on several proposals and summarizes the justification that lead to the decision. 
We represent resolutions in UML with an instance of class Resolution, including subject, 
description, justification and status attributes. A Resolution can be related with 

availability-first!:Argument Point and click interfaces are much more complex to implement 
than text-based interfaces. They are also more difficult to test as 
the number of actions available to the dispatcher is much larger. 
The point and click interface risks introducing fatal errors in the 
system that would offset any usability benefit the interface would 
provide.

FIGURE 9-6.  An example of an argument. (UML object diagram).

display?:Issue

availability$:Criterionusability$:Criterion

terminal?:Issue

addressed byaddressed byaddressed by

raises meets

fails

meets

fails

availability-first!:Argument

is supported by

is opposed by

input?:Issue

text-based:Proposal point&click:Proposal



Issue modeling  DRAFT - DO NOT DISTRIBUTE

Rationale 15 of 52

Proposals with based-on associations. A Resolution has exactly one resolves 
association to the Issue it resolves.

The status attribute of a Resolution indicates whether the Resolution is still relevant or 
not. When the Resolution is linked with its corresponding issue, its status is set to active 
and the status of the corresponding Issue is changed to closed. If the Issue is reopened, 
the status of the Issue is changed to open and the status of the Resolution is changed 
to obsolete. A closed Issue has exactly one active Resolution and any number of 
obsolete Resolutions.

Finalizing the traffic control interface issue, we select a text-based display and a keyboard 
interface as a basis for the user interface. This decision is motivated by treating the 
availability criterion as more important than the usability criterion: a text-based interface 
will result in much simpler and more reliable user interface code at the cost of some 
usability. The dispatcher will not be able to see as much data at one time and will not be able 
to issue commands as fast as using a point and click interface. We create a resolution node 
which contains the justification of the decision and create links between the resolution and 
the two issues it addresses (see Figure 9-7).



Issue modeling DRAFT-DO NOT DISTRIBUTE

16 of 52 Rationale

Adding a resolution to an issue model effectively concludes the discussion of the 
corresponding issue. As development is iterative, it is sometimes necessary to reopen an 
issue and re-evaluate competing alternatives. At the end of development, however, most 
issues should be closed or listed as known problems in the documentation. 

text-based & 
keyboard:Resolution

We select a text-based display and a keyboard input for the traffic 
control user interface. The terminal emulation should provide line 
characters allowing the drawing of track circuits in text mode. 
This decision is motivated by the relative simplicity and reliability 
of text-based interfaces compared to point&click interfaces. We are 
aware that this decision costs some usability, as fewer data can be 
presented to the dispatcher and issuing commands by the 
dispatcher will be slower and more prone to errors. 

FIGURE 9-7.  An example of closed issue. (UML object diagram)

display?:Issue

availability$:Criterionusability$:Criterion

terminal?:Issue

addressed byaddressed byaddressed by

raises meets

fails

meets

fails

availability-first!:Argument

is supported by

is opposed by

text-based & keyboard
:Resolution

resolvesresolves

input?:Issue

text-based:Proposal point&click:Proposal



Issue modeling  DRAFT - DO NOT DISTRIBUTE

Rationale 17 of 52

9.3.6.  Implementing resolutions: action items

A resolution is implemented in terms of one or more action items. An action item is a task 
assigned to a person with a completion date. Action items are not part of the rationale per 
say, but rather, they are part of the task model (see Chapter 4, Project Management). Action 
items are described here because they are tightly integrated into the issue model.

We represent an action item in UML with an instance of the ActionItem class. The 
ActionItem class has a subject, description, owner, deadline, and status attributes. 
The owner is the person responsible for the completion of the ActionItem. The status of 
an ActionItem can be todo, notDoable, inProgress, or done. A Resolution is associated 
with the ActionItems with an is implemented by link. Figure 9-8 represents the 
ActionItems generated after the resolution of Figure 9-7.

The issue notation we described until now and its integration with the task model is the 
modeling notation we use for describing rationale. Other issue models have been proposed 
in the literature for representing rationale. Next, let us survey briefly these other models.

9.3.7.  Examples of issue-based models and systems

The capture of rationale was originally proposed by Kunz and Rittel. Ever since, many 
different models have been designed and evaluated in the context of software engineering 
and other engineering disciplines. Here, we briefly compare three of them, IBIS (Issue-Based 

updateSDD:ActionItem  For Alice. Update the SDD to reflect the text-based&keyboard 
resolution.

investigateTerm:ActionItem For Dave. Investigate different terminal emulation and their 
advantages for displaying TrackSections.

FIGURE 9-8.  An example of implementation of a resolution. (UML object diagram)

investigateTerm:ActionItemupdateSDD:ActionItem

text-based & keyboard
:Resolution

is implemented by is implemented by



Issue modeling DRAFT-DO NOT DISTRIBUTE

18 of 52 Rationale

Information System, [Kunz & Rittel, 1970]), DRL (Decision Representation Language, [Lee, 
1990]), and QOC (Questions, Options, and Criteria, [MacLean et. al, 1991]).

Issue-Based Information System (IBIS)

IBIS includes an issue model and a design method for addressing ill-structured, or wicked 
problems (as opposed to tame problems). A wicked problem is defined as a problem which 
cannot be solved algorithmically, but rather, has to be resolved through discussion and 
debate. 

The IBIS issue model (Figure 9-9) has three nodes (Issues, Positions, and Arguments) 
related by eight kinds of links (supports, objects-to, replaces, responds-to, 
generalizes, questions, and suggests). Each Issue describes a design problem under 
consideration. Developers propose solutions to the problem by creating Position (similar 
to the Proposal nodes we described in Section 9.3.3). While alternatives are being 
generated, developers argue about their value with Argument nodes. Arguments can either 
support a Position or object to a Position. Note that the same node can apply to multiple 
positions. The IBIS model did not originally include Criteria or Resolutions. 

IBIS was supported by a hypertext tool (gIBIS, [Conklin & Burgess-Yakemovic, 1991]) and 
used for capturing rationale during face-to-face meetings. It provided the basis for most of 
the subsequent issue models, including DRL and QOC which we discuss next.

FIGURE 9-9. The IBIS model (UML class diagram, navigation added for clarity).

Issue

Position Argument

responds-to
suggests questionsquestions

suggests

objects-to
supports

generalizes
replaces



Issue modeling  DRAFT - DO NOT DISTRIBUTE

Rationale 19 of 52

Decision Representation Language (DRL)

DRL (Decision Representation Language [Lee, 1990]) aims at capturing the decision 
rationale of a design. A decision rationale is defined by Lee as the representation of the 
qualitative elements of decision making, including the alternatives being considered, their 
evaluation, the arguments that led to these evaluations and the criteria used in these 
evaluations. DRL is supported by SYBIL, a tool that enables the user to track dependencies 
among elements of the rationale when revising evaluations. DRL elaborates on the original 
IBIS model by adding nodes to capture Design Goals and Procedures. DRL views the 
construction of the rationale as a comparable task as the design of the artifact itself. DRL is 
summarized in Figure 9-10. The main drawback of DRL is its complexity (9 types of nodes 
and 15 types of links) and the effort spent in structuring the captured rationale.

Questions, Options, and Criteria (QOC)

QOC (Questions, Options, and Criteria) is another elaboration of IBIS. Questions represent 
design problems to be solved (Issues in the issue model we presented). Options are 

FIGURE 9-10.Decision Representation Language (UML class diagram, navigation added 
for clarity).

Decision Problem

Alternative

Goal

AchievesLink

Claim

Claim

QuestionProcedure

is a good alternative for

achieves

supports

denies

is a result of

is an answering
procedure for

denies

supports
presupposes

raises
answers



Issue modeling DRAFT-DO NOT DISTRIBUTE

20 of 52 Rationale

possible answers to Questions (Proposals in our model). Options can trigger other 
Consequent Questions. Options are assessed negatively and positively against 
Criteria which are relative measures of goodness defined by the developers. Also, 
Arguments can support or challenge any Question, Option, Criteria, or relationship 
among those. Arguments may also support and challenge Arguments. Figure 9-11 depicts 
the QOC model. 

DSA and IBIS differ at the process level. IBIS’s aim, on the one hand, has been to capture 
design argumentation as it occurs (e.g., gIBIS was used for capturing design meetings). 
QOC structures, on the other hand, are constructed as an act of reflection on the current state 
of the design. This conceptual separation of the construction and argumentation phases of 
the design process emphasizes the systematic elaboration and structuring of rationale, as 
opposed to capturing it as a side effect of deliberation. Rationale, from QOC’s perspective, is 
a description of the design space explored by the developers. From IBIS’s perspective, 
rationale is a historical record of the analysis leading to a specific design. In practice, both 
approaches can be applied to capture sufficient rationale. We describe the activities related 
to capturing and maintaining rationale next.

FIGURE 9-11.Questions, Options, Criteria model (UML class diagram, navigation added 
for clarity).

Question

Option Argument

responds-to

is a consequence of

objects-to
supports

Criterion

objects-to
supports

objects-to
supports

positive assessment
negative assessment



From issues to decisions  DRAFT - DO NOT DISTRIBUTE

Rationale 21 of 52

9.4. From issues to decisions

Maintaining rationale helps developers deal with change. By capturing the justification of 
decisions, they can more easily revisit important decisions when user requirements or the 
target environment changes. For rationale models to be useful, however, they need to be 
captured, structured, and easily accessible. In this section we describe these activities, 
including:

• capturing rationale during design meetings (Section 9.4.2),

• revising rationale models with subsequent clarifications (Section 9.4.3),

• capturing additional rationale during revisions (Section 9.4.4), and

• reconstructing rationale that was not captured (Section 9.4.5).

The most critical ratinonale information is generated during system design: decisions 
during system design can impact every subsystem and their revision is costly, especially 
when done late in the design process. Moreover, the rationale behind subsystem 
decomposition is usually complex, as it spans many different issues such as hardware 
allocation, persistent storage, access control, global control flow, and boundary conditions.

For these reasons, we focus on system design in this chapter. Note, however, that 
maintaining rationale can be done similarly applied throughout the development, from 
requirements elicitation to field testing. We illustrate rationale activities with issues from the 
system design of CTC, a central traffic control system for freight trains. We describe the 
current system design model of CTC next.

9.4.1.  CTC system design

Consider the CTC system we described in Section 9.3.1. We are in the process of re-
engineering a legacy system, replacing a mainframe computer with a network of 
workstations. We are also enhancing the system, such as adding access control and more 
focus on security and usability. We are in the middle of system design. So far, we identified 
from the nonfunctional requirements several design goals (ordered by descending priority):

• Availability: the system should be crash less than once per month and recover 
completely from a crash within 10 minutes.

• Security: no entity outside the control room should be able to access the state of the 
controlled tracks or manipulate any of their devices.

• Usability: once trained, a dispatcher should input no more than two erroneous 
command per day.



From issues to decisions DRAFT-DO NOT DISTRIBUTE

22 of 52 Rationale

We have allocated a client node per dispatcher. Two redundant server nodes maintain the 
global state of the system (see Figure 9-12). The servers are also responsible for persistent 
storage. Data is stored in flat files that can be copied off-line and imported into a relational 
database for off-line processing by other systems. Communication with devices on the 
tracks is done via modems managed by a dedicated machine. A middleware supports two 
types of communication among subsystems: method invocation, for handling requests, and 
notification of state changes, for informing subsystems of state changes. Each subsystem 
subscribes to the events it is interested in. Presently, we must address access control issues 
and define the mechanisms that prevent dispatchers from manipulating TrackSections of 
other dispatchers. We describe in the following sections how the access control issue is 
debated and resolved while capturing its rationale.

DispatcherClient Each dispatcher is assigned a DispatcherClient node running the user 
interface to the system.

FIGURE 9-12.Subsystem decomposition for CTC (UML deployment diagram). The state of 
the system is maintained by a mainServer. A hotBackup of the mainServer stands by in 
case the mainServer fails. The mainServer sends commands and receives state transitions 
from the tracks via the ModemPool.

UISubsystem
TrackingSubsystem

:DispatcherClient
mainServer:CTCServer

hotBackup:CTCServer

StorageSubsystem

ModemManager

trackModems:ModemPool



From issues to decisions  DRAFT - DO NOT DISTRIBUTE

Rationale 23 of 52

9.4.2.  Capturing rationale in meetings

Meetings enables developers to present, negotiate, and resolve issues face-to-face. The 
physical presence of the respective developers involved in the discussion is important, 
adding the benefits of nonverbal communication: it allows people to assess the relative 
positions of each other and the trade-offs they are willing to make. Conversely, negotiating 
and making decisions via email, for example, is difficult as misunderstandings can easily 
occur. Face-to-face meetings, then, are a natural starting point for capturing rationale.

We described procedures for organizing and capturing meetings with minutes and agendas 
in Chapter 5, Project Communication,. An agenda, posted in advance of the meeting, 
describes the status and points to be discussed. The meeting is recorded in minutes that are 
made available shortly after the meeting. Using the issue modeling concepts we described 
in Section 9.3, we write an agenda in terms of issues that we need to discuss and resolve. We 

CTCServer A CTCServer is responsible for maintaining the state of the system. It 
transmits dispatcher commands to the field devices and receives state 
information from the field via the ModemPool node. A CTCServer is also 
responsible for storing persistent state (e.g., device addresses, device names, 
dispatcher assignments, train schedules). Two CTCServers, a main server 
and a hot backup are used to increase availability.

ModemPool The ModemPool manages the modems used to communicate with the field 
devices.

ModemManager The ModemManager is responsible for connecting to field devices and 
transmitting field commands. 

StorageSubsystem The StorageSubsystem is responsible for maintaining persistent state.

TrackingSubsystem The TrackingSubsystem is responsible for maintaining track state, as 
notices of state changes are received from the field, and for issuing device 
commands via the ModemManager based on user level commands received 
from the UISubsystem.

UISubsystem The UISubsystem is responsible for receiving commands and displaying 
track state to the dispatcher. The UISubsystem controls the validity of the 
dispatcher’s commands before forwarding them to the CTCServer.

FIGURE 9-12.Subsystem decomposition for CTC (UML deployment diagram). The state of 
the system is maintained by a mainServer. A hotBackup of the mainServer stands by in 
case the mainServer fails. The mainServer sends commands and receives state transitions 
from the tracks via the ModemPool.



From issues to decisions DRAFT-DO NOT DISTRIBUTE

24 of 52 Rationale

state the objective of the meeting as coming to a resolution on these issues and any related 
subissue that is raised in the discussion. We structure the meeting minutes in terms of 
proposals that we explore during the meeting, criteria that we agree on, and arguments we use 
to support or oppose proposals. We capture decisions as resolutions and action items that 
implement resolutions. During the meeting we review status in terms of the action items 
that we produced in the previous meetings.

For example, consider the access control issue of the CTC system. We need to organize a 
meeting of the architecture team, including the developers responsible for the 
UISubsystem, the TrackingSubsystem, and the NotificationService. Alice, the 
facilitator for the architecture team, posts the agenda depicted in Figure 9-13.

AGENDA: Integration of access control and notification

When and Where Role
Date: 9/13/1998 Primary Facilitator: alice
Start: 4:30pm Timekeeper: dave
End: 5:30pm Minute Taker: ed
Building: Train Hall 
Room: 3420

1. Purpose

The first revisions of the hardware/software mapping and the persistent storage design have been 
completed. The access control model needs to be defined and its integration with the current 
subsystems, in particular, NotificationService and TrackingSubsystem, needs to be 
defined.

2. Desired outcome

Resolve issues about the integration of access control with notification

3. Information sharing [Allocated time: 15 minutes]

AI[1]: Dave: Investigate the access control model provided by the middleware.

4. Discussion [Allocated time: 35 minutes]

I[1]: Can a dispatcher see other dispatchers’ TrackSections?
I[2]: Can a dispatcher modify another dispatchers’ TrackSections?
I[3]: How should access control be integrated with TrackSections and 
NotificationService?

5. Wrap up [Allocated time: 5 minutes]

Review and assign new action items.
Meeting critique.

FIGURE 9-13.Agenda for the access control discussion of CTC.



From issues to decisions  DRAFT - DO NOT DISTRIBUTE

Rationale 25 of 52

During the meeting, we review the action item (AI[1]: Investigate access control model by 
middleware) generated in the previous architecture meeting. The middleware provides basic 
blocks for authentication and encryption, but does not introduce any other constraints on 
the access model. Issues I[1] and I[2] are resolved quickly with domain knowledge: a 
dispatcher can see all TrackSections but can only manipulate the devices of her 
TrackSection. Issue I[3], however, (How should access control be integrated with 
TrackSections and NotificationService?) is more difficult and sparks a debate.

Dave, the developer responsible for the NotificationService, proposes to integrate the 
access control with the TrackSection (see Figure 9-14). The TrackSection would maintain 
an access list of the Dispatchers who can examine or modify the given TrackSection. 
Events would also be organized by TrackSections. To be notified about events in a 
TrackSection, a subsystem would need to subscribe to a TrackSection via the 
NotificationService. The NotificationService would then check with the given 
TrackSection if the current dispatcher had at least read access.

NotificationService The NotificationService broadcasts changes of state of a 
TrackSection. To receive notices from the NotificationService, a 
subsystem needs to subscribe to a TrackSection. Only subsystems who 
have access to a given TrackSection can subscribe to the events 
generated by a TrackSection. The access is determined by invoking the 
isAccessible() operation on the TrackSection.

FIGURE 9-14.Proposal P[1]: The access is controlled by the TrackSection object with an 
access list. The NotificationService queries the TrackSection to determine if a 
subsystem can receive notices about a given TrackSection. (UML collaboration diagram.)

:UIClient

:System

ts1291:TrackSection

:NotificationService

1: subscribeToStateChangeEvents(ts1291)

2: setSwitchState(s1515, open)

1.1.1: whoIsThis()

1.1: isAccessible(ts1291)

2.1: whoIsThis()



From issues to decisions DRAFT-DO NOT DISTRIBUTE

26 of 52 Rationale

Alice, the developer responsible for the TrackSubsystem which includes the TrackSection 
class, proposes to reverse the dependency between the TrackSection and the 
NotificationService (see Figure 9-15). In this proposal, the UIClient would interact 
only with the TrackSection class, including for subscribing to events. The UIClient 
would invoke the subscribeToEvents() method on the TrackSection, which would 
perform the access control checks and then invoke the subscribeToStateChangeEvents() 
on the NotificationService. The UIClient would then not have direct access to the 
NotificationService. This has the advantage to centralize all the protected operations 

System The System is responsible for tracking securely who is the current 
dispatcher based on information provided by the UIClient. The 
TrackSection examines the credentials of the current dispatcher with the 
whoIsThis() operation.

TrackSection A TrackSection consists of a set of contiguous TrackCircuits and 
their associated Devices. Access is controlled at the TrackSection level 
with an access list.

UIClient The UIClient is responsible for displaying TrackSections and 
inputting commands for changing TrackSection state.

FIGURE 9-14.Proposal P[1]: The access is controlled by the TrackSection object with an 
access list. The NotificationService queries the TrackSection to determine if a 
subsystem can receive notices about a given TrackSection. (UML collaboration diagram.)



From issues to decisions  DRAFT - DO NOT DISTRIBUTE

Rationale 27 of 52

into one class and centralize the access control checks. Moreover, the TrackSection would 
then also be able to unsubscribe UIClients when the access list is modified.

Ed notes that every dispatcher is allowed to see other dispatcher’s TrackSections, only 
modification of state needs to be controlled. Assuming that all modifications are done via 
method invocation and that the NotificationService is only used for broadcasting 

NotificationService The NotificationService broadcasts changes of state of a 
TrackSection. To receive notices from the NotificationService, a 
subsystem needs to subscribe to a TrackSection. The 
NotificationService is only accessible to the TrackSection class which 
controls access.

TrackSection A TrackSection consists of a set of contiguous TrackCircuits and 
their associated Devices. Access is controlled at the TrackSection level. 
To receive notices of state changes, a subsystem needs to invoke the 
subscribeToEvents() operation of the TrackSection class. The 
TrackSection checks access before invoking the 
subscribeToTrackSectionEvents() method on 
NotificaitonService.

FIGURE 9-15.Proposal P[2]: The UIClient subscribes to track section events via the 
subscribeToEvents() operation on the TrackSection. The TrackSection checks access 
and then invokes the subscribeToTrackSectionEvents() operation on the 
NotificationService. The NotificationService is not accessible to the UIClient 
class. (UML collaboration diagram, differences from Figure 9-14 highlighted in italics.)

:UIClient

:System

ts1291:TrackSection

:NotificationService

2: setSwitchState(s1515, open)

1.1: whoIsThis()2.1: whoIsThis()

1: subscribeToEvents()
1.2:subscribeToStateChangeEvents(ts1291)



From issues to decisions DRAFT-DO NOT DISTRIBUTE

28 of 52 Rationale

changes, the NotificationService need not be integrated with access control. In this case, 
a refinement of Dave’s initial proposal could be used.

The architecture team decides to use Ed’s proposal based on its simplicity. Ed produces the 
chronological meeting minutes depicted in Figure 9-17.

NotificationService The NotificationService broadcasts changes of state of a 
TrackSection. To receive notices from the NotificationService, a 
subsystem needs to subscribe to a TrackSection. Only subsystems who 
have access to a given TrackSection can subscribe to the events generated by a 
TrackSection. The access is determine by invoking the isAccessible() 
operation on the TrackSection.

FIGURE 9-16.Proposal P[3]: The access to operations that modify TrackSections is 
controlled by the TrackSection object with an access list. The NotificationService 
need not be part of the access control since every dispatcher can see changes of state. (UML 
collaboration diagram, differences from Figure 9-14 highlighted in italics.)

:UIClient

:System

ts1291:TrackSection

:NotificationService

1: subscribeToStateChangeEvents(ts1291)

2: setSwitchState(s1515, open)

1.1.1: whoIsThis()2.1: whoIsThis()



From issues to decisions  DRAFT - DO NOT DISTRIBUTE

Rationale 29 of 52

CHRONOLOGICAL MINUTES: Integration of access control and notification

When and Where Role
Date: 9/13/1998 Primary Facilitator: alice
Start: 4:30pm Timekeeper: dave
End: 6:00pm Minute Taker: ed
Building: Train Hall 
Room: 3420

1. Purpose

The first revisions of the hardware/software mapping and the persistent storage design have been 
completed. The access control model needs to be defined and its integration with the current 
subsystems, in particular, NotificationService and TrackingSubsystem, needs to be 
defined.

2. Desired outcome

Resolve issues about the integration of access control with notification

3. Information sharing

AI[1]: Dave: Investigate the access control model provided by the middleware.
Status: The middleware supports strong authentication and encryption. It does not introduce

any constraints on the access model. Any access policy can be implemented on the server
side.

4. Discussion 

I[1]: Can a dispatcher see other dispatchers’ TrackSections?
Zoe: Yes.
Ed: In CTC specification

I[2]: Can a dispatcher modify another dispatchers’ TrackSections?
Zoe: No. Only the dispatcher assigned to the TrackSection can manipulate the devices of 

the section. Note that the dispatcher can be re-assigned dynamically.
Ed: Also in CTC specification.

I[3]: How should access control be integrated with TrackSections and 
NotificationService?

Dave: The TrackSection maintains an access list. The notification service asks the 
TrackSection about how has access.

Alice: We should probably reverse the dependency between TrackSection 
and NotificationService. Instead, the UIClient requests subscriptions from the 
TrackSection which checks for access and then call the NotificationService. This way, 
all protected methods are in one place.

Dave: This way the TrackSection can also more easily unsubscribe dispatchers when their 
access is revoked.



From issues to decisions DRAFT-DO NOT DISTRIBUTE

30 of 52 Rationale

Ed produces the minutes of Figure 9-17 by inserting in the agenda the discussion relevant to 
the different issues. The discussion, however, is recorded as a chronological list of 
statements made by the participants. Most of these statements mix the presentation of an 
alternative with the argumentation against another alternative. In order to clarify the 
minutes, Ed restructures the minutes after the meeting with issue models (Figure 9-18)

Ed: Hey, no need for access control in NotificationService: dispatchers can see all
TrackSections. As long as the NotificationService is used not used for changing the 
TrackSection state, no need to restrict subscriptions.

Alice: But thinking about the access control on notification would be more general.

Ed: But more complex. Let’s just separate access control and notification at this point and 
revisit 

the issue if the requirements change.

Alice: Ok. I’ll take care of revising the TrackingSubsystem API.

5. Wrap up 

AI[2]: Alice: design access control for the TrackingSubsystem based on authentication and 
encryption provided by the middleware.

FIGURE 9-17.Chronological minutes for the access control discussion of CTC.

STRUCTURED MINUTES: Integration of access control and notification

When and Where Role
Date: 9/13/1998 Primary Facilitator: alice
Start: 4:30pm Timekeeper: dave
End: 6:00pm Minute Taker: ed
Building: Train Hall 
Room: 3420

1. Purpose

The first revisions of the hardware/software mapping and the persistent storage design have been 
completed. The access control model needs to be defined and its integration with the current 
subsystems, in particular, NotificationService and TrackingSubsystem, needs to be 
defined.

2. Desired outcome

Resolve issues about the integration of access control with notification



From issues to decisions  DRAFT - DO NOT DISTRIBUTE

Rationale 31 of 52

The important results of the access control meeting are:

• dispatchers can see all TrackSections but modify only the ones they are assigned 
to,

• an access list associated with TrackSections is used for access control,

• NotificationService is not integrated with access control, since state changes can 
be seen by any dispatchers.

3. Information sharing

AI[1]: Dave: Investigate the access control model provided by the middleware.
Status: The middleware supports strong authentication and encryption. It does not introduce

any constraints on the access model. Any access policy can be implemented on the server
side.

4. Discussion 

I[1]: Can a dispatcher see other dispatchers’ TrackSections?
R[1]: Yes (from CTC specification and confirmed by Zoe, a test user).

I[2]: Can a dispatcher modify another dispatchers’ TrackSections?
R[2]: No. Only the dispatcher assigned to the TrackSection can manipulate the devices of 

the section. Note that the dispatcher can be re-assigned dynamically (from CTC 
specification and confirmed by Zoe).

I[3]: How should access control be integrated with TrackSections and 
NotificationService?

P[3.1]: TrackSections maintain an access list of who can examine or modify the state of 
the TrackSection. To subscribe to events, a subsystem sends a request to the 
NotificationService which in turns sends a request to the corresponding 
TrackSection to check access.

P[3.2]: TrackSections host all protected operations. The UIClient requests subscription 
to TrackSection events by sending a request to the TrackSection, which checks access 
and sends a request to the NotificationService.
A[3.1] for P[3.2]: Access control and protected operations are centralized into one class.

P[3.3]: There is no need to restrict the access to the event subscription. The UIClient 
requests subscriptions directly from the NotificationService. The 
NotificationService need not check access.
A[3.2] for P[3.3] Dispatchers can examine the state of any TrackSections (see R[1]).
A[3.3] for P[3.3]: Simplicity.

R[3]: P[3.3]. See action item AI[2].

5. Wrap up 

AI[2]: Alice: design access control for the TrackingSubsystem based on authentication and 
encryption provided by the middleware and on resolution R[3] discussed in these minutes.

FIGURE 9-18.Structured minutes for the access control discussion of CTC.



From issues to decisions DRAFT-DO NOT DISTRIBUTE

32 of 52 Rationale

By focusing on the issue-model, we have also captured that:

• integrating the NotificationService with access control was investigated,

• centralizing all protected methods into the TrackSection class was an accepted 
principle.

The last two pieces of information are rationale information and would usually be 
considered unimportant. However, this is the type of information that is captured by the 
minute taker and structured for facilitating future changes.

9.4.3.  Capturing rationale asynchronously

Meeting discussions rely on context information. When the meeting starts, most participants 
already have a substantial amount of information about the system, its intended purpose 
and its design. The facilitator of the meeting usually focuses on a small set of issues which 
need to be resolved. For example, in the meeting we presented in the previous section, all 
participants knew the purpose and functionality of the CTC system, its design goals, and 
current subsystem decomposition. The minutes of this meeting only records the issues 
under discussion and, therefore, does not contain much or any of the background 
information. Unfortunately, this information is lost over time and meeting minutes become 
obsolete quickly.

We can use issue modeling to address this problem. In Chapter 5, Project Communication, we 
described the use of groupware, such as newsgroups or Lotus Notes, for supporting 
asynchronous communication. By integrating the preparation and recording of the meeting 
with the asynchronous communication, we can capture more contextual information.

In the CTC example, assume Mary, the developer responsible for the UISubsystem, was not 
able to attend the access control meeting. She reads the agenda and the meeting minutes 
which were posted on the newsgroup dedicated to the architecture team. Although she 
understands the outcome of the meeting, the discussion about the NotificationService 
requires clarification: argument A[3.2] for proposal P[3.3] claims that, since dispatchers 
can see every TrackSection, all events can be visible and, hence, there is no need to control 
the access to the events.This implies that the NotificationService is used only for 
notifying other subsystems of state changes. In other words, the TrackSection does not 
change its state as a consequence of events generated by other subsystems. Mary wants to 
confirm that this assumption is correct and, consequently, posts an issue on the newsgroup 



From issues to decisions  DRAFT - DO NOT DISTRIBUTE

Rationale 33 of 52

(Figure 9-19). She also proposes to disallow the TrackingService from subscribing to any 
events, in order to ensure proper access control.

Follow up on meeting minutes enable developers to capture more of the context 
surrounding the design. As a consequence, more rationale, and clearer information is 
captured. By using the same issue model for both meetings and on-line discussions allows 
us to integrate all rationale information. Although this can be done with minimal 
technology, such as newsgroups, the representation of the issue-model, the meeting agendas 
and minutes, and related messages can be integrated into a groupware tool, such as a 

Newsgroup: ctc.architecture.discuss
Subject: Date:
I[1]: Can a dispatcher see other dispatchers’ TrackSections? 9/14/1998
I[2]: Can a dispatcher modify another dispatchers’ 

TrackSections? 9/14/1998
I[3]: How should access control be implemented? 9/14/1998

P[3.1]: TrackSection has access list 9/14/1998
P[3.2]: TrackSection has subscription operations 9/14/1998

+A[3.1]: Extensibility. 9/14/1998
+A[3.2]: Centralize all protected operations. 9/14/1998

P[3.3]: NotificationService is not part of access 9/14/1998
+A[3.3]: Dispatchers can see all TrackSections 9/14/1998
+A[3.4]: Simplicity. 9/14/1998

---
From: Mary
Newsgroups: ctc.architecture.discuss
Subject: Consequent Issue: Should notification not be used for requests?
Date: Thu, 15 Sep 1998 13:12:48 -0400

I[4] responding to A[3.3]: for access lists against capabilities
> Dispatchers can see all TrackSections and, thus, should be able
> to see all events. 

This assumes that the TrackSection does not rely on events to change its 
state and that events are only used for informing other subsystems of 
state changes. For the purpose of robustness, should we disallow the 
TrackingService to subscribe to any events?

FIGURE 9-19.Example of a consequent issue posted asynchronously (newsgroup 
post). Mary, a developer who did not attend the meeting, requests clarification. 
This leads to the post of an additional issue and the capture more of the rationale.



From issues to decisions DRAFT-DO NOT DISTRIBUTE

34 of 52 Rationale

custom Lotus Notes database or a multi-user issue-base hosted on a web site (see example in 
Figure 9-20). 

Once we institute procedures for organizing and recording rationale in meetings, and 
expanding it with groupware, we are able to capture a great deal of rationale. The next 
challenge is to keep this information up-to-date as changes occur.

9.4.4.  Capturing rationale when discussing change

Rationale models help us deal with change. Unfortunately, rationale is itself subject to 
change when we revise decisions and needs to be updated. When we design a solution in 

FIGURE 9-20.An example of web-based issue database (Lotus Notes/Domino). 
Developers posts issues, proposals, arguments, and resolutions with web forms and 
browse the issue model. (xxx place holder xxx)



From issues to decisions  DRAFT - DO NOT DISTRIBUTE

Rationale 35 of 52

response to a requirements change, for example, we look at past rationale to assess which 
decisions need to be revised, and design a change. Not only do we need to capture the 
rationale for the change and its solution, we also need to relate it with past rationale.

For example, in the CTC system, assume the requirements on the access control changed. 
Before, dispatchers were allowed to see all TrackSections. The client informed us that, 
unlike previously specified, dispatchers should be able to only see the neighboring 
TrackSections. In response to this change, we need to modify the design of the access 
control and organize a meeting with the architecture team. In particular, we need to search 
past rationale associated with access control Alice, the primary facilitator of the architecture 
team, posts the agenda depicted in Figure 9-21.

During the meeting, Dave presents the rationale discussed in previous meetings and on the 
architecture newsgroup. The architecture team notices that the assumption that all 
subsystems can see events is not valid anymore: the dispatcher should be allowed to see 
only the events related to neighboring TrackSections. Proposal P[2, 9/14/98] (see 

AGENDA: Revision of access control, dispatchers can only access neighboring tracks.

When and Where Role
Date: 10/13/1998 Primary Facilitator: alice
Start: 4:30pm Timekeeper: dave
End: 5:30pm Minute Taker: ed
Building: Signal Hall 
Room: 2300

1. Purpose

The client requested that dispatchers be able to access neighboring TrackSections.

2. Desired outcome

Resolve access control issues related to this change of requirement.

3. Information sharing [Allocated time: 15 minutes]

AI[1]: Dave: Recover rationale for access control.

4. Discussion [Allocated time: 35 minutes]

I[1]: How should access control be revised based on the neighboring track requirement?

5. Wrap up [Allocated Time: 5 minutes]

Review and assign new action items.
Meeting critique.

FIGURE 9-21.Agenda for the access control revision of CTC.



From issues to decisions DRAFT-DO NOT DISTRIBUTE

36 of 52 Rationale

Figure 9-15) seems to be the better solution under the new requirements, as all protected 
operations could be centralized in the TrackSection class. Unfortunately, the 
implementation has already progressed and the developers want to minimize changes to 
the code. Instead, Alice proposes to select proposal P[1, 9/14/98] (see Figure 9-14): the 
current UIClient stays unchanged as the interfaces to the TrackSection and 
NotificationService classes need not change. Only the NotificationService needs to 
change such that it sends requests to the TrackSection to check the access of the current 
dispatcher. To revoke dispatcher privileges when an access list is changed, the 
TrackSection sends a request to the NotificationService to unsubscribe dispatchers. 
This introduces a circular dependency between TrackSection and NotificationService 
but minimizes modifications to existing code. 

This solution is selected by the architecture team. Ed produces the structured minutes 
depicted in Figure 9-22 (chronological minutes not displayed for brevity).

STRUCTURED MINUTES: Revision of access control, dispatchers can only access neighboring 
tracks.

When and Where Role
Date: 10/13/1998 Primary Facilitator: alice
Start: 4:30pm Timekeeper: dave
End: 5:30pm Minute Taker: ed
Building: Signal Hall 
Room: 2300

1. Purpose

The client requested that dispatchers be able to access neighboring TrackSections.

2. Desired outcome

Resolve access control issues related to this change of requirement.

3. Information sharing

AI[1]: Dave: Recover rationale for access control.
Result: issues I[1, 9/13/98] and I[2, 9/15/98] recovered:

I[1, 9/13/1998]: How should access control be integrated with TrackSections and 
NotificationService? (Minutes from 9/14)

P[3.1]: TrackSections maintain an access list of who can examine or modify the state of 
the TrackSection. To subscribe to events, a subsystem sends a request to the 
NotificationService which in turns sends a request to the corresponding 
TrackSection to check access.



From issues to decisions  DRAFT - DO NOT DISTRIBUTE

Rationale 37 of 52

The minutes depicted in Figure 9-22 serve two purposes: to record the rationale for the new 
change and to relate it to past rationale. This is done by quoting the past rationale that was 
used to revisit the access control decision. Furthermore, these new minutes are posted on 
the architecture newsgroup and discussed by other developers who could not attend the 
meeting, thus completing the cycle of recording and clarifying rationale information. In the 

P[3.2]: TrackSections host all protected operations. The UIClient requests subscription 
to TrackSection events by sending a request to the TrackSection, which checks access 
and sends a request to the NotificationService.
A[3.1] for P[3.2]: Extensibility.
A[3.2] for P[3.2]: Access control and protected operations are centralized into one class.

P[3.3]: There is no need to restrict the access to the event subscription. The UIClient 
requests subscriptions directly from the NotificationService. The 
NotificationService need not check access.
A[3.3] for P[3.3] Dispatchers can examine the state of any TrackSections (see R[1]).
A[3.4] for P[3.3]: Simplicity.

R[3]: P[3.3]. See action item AI[2].

I[2,9/15/1998]: Should notification not be used for requests? 
(from Mary’s news post 9/15)

R[2]: Notification should be used only for informing of state changes. 
TrackSections and, more generally, TrackingSubsystem should not change their state 
based on events.

4. Discussion

I[1]: How should access control be revised based on the neighboring track requirement?
P[1.1]: Protected operations, including subscription, centralized in TrackSection, as in

P[3.2, 9/13/1998].
AI[1.1] against P[1.1]: This requires all subsystems subscribing to notification events 

to be modified, since the subscription operation is moved from the 
NotificationService to the TrackSection.

P[1.2]: NotificationService sends requests to TrackSections to check access. 
TrackSection sends request to NotificationService to unsubscribe dispatchers 
whose access has been revoked. P[3.1, 9/13/1998]
A[1.2] for P[1.2]: Minimal change to existing implementation.
A[1.3] against P[1.2]: Circular dependencies.

R[1]: P[1.2], see AI[2] and AI[3].

5. Wrap up 

AI[2]: Alice: change the TrackSection to unsubscribe dispatchers when their rights are 
revoked.
AI[3]: Dave: modify NotificationService to check access with TrackSection when 
subscribing a new subsystem.

FIGURE 9-22.Structured minutes for the access control revision of CTC.



From issues to decisions DRAFT-DO NOT DISTRIBUTE

38 of 52 Rationale

case groupware is used, the new rationale can be related to the past rationale with a 
hyperlink, making it easier for developers to navigate to the related information.

Note that even when an issue base is used to maintain and track open issues, this 
information base can grow quickly into a large unstructured chaos. Moreover, some issues 
are not recorded as not all issues are discussed in meetings. Many issues are discussed and 
resolved informally in hallway conversions. It is necessary, therefore, to reconstruct the 
missing rationale of the system and integrate them with past rationale. We discuss this in 
the next section.

9.4.5.  Reconstructing rationale

Reconstructing rationale is a different method for capturing the rationale of the system. 
Instead of capturing decisions and their justifications as they occur, rationale is 
systematically reconstructed from the system model, the communication record, and 
developers’ memories. With this method, rationale is captured and structured more 
systematically. Fewer resources are invested during the early phases of the process, thus 
enabling developers to come faster to a solution. Also, separating the design activity from 
the rationale capture enables developers to step back and critique their design more 
objectively. Reconstructing rationale, however, focuses on the selected solution and fails to 
capture discarded alternatives and their discussion.

For example, assume we did not capture the rationale of the integration between 
notification and access control in CTC and that the only information we had was the system 
design model in Figure 9-23.



From issues to decisions  DRAFT - DO NOT DISTRIBUTE

Rationale 39 of 52

We want to recover the rationale of the system design for review and documentation. We 
decide to organize each issue as a table with two columns, the left column for the proposals 
and the right column for their corresponding arguments. In Figure 9-24, we recover the 
rationale for the integration of access control with notification. We identify two possible 
solutions: P[1] in which the TrackSection class exports all operations whose access is 
controlled including subscription to notifications, and P[2] in which the 
NotificationService delegates the access control check to the TrackSection. We then 
enumerate the advantages and disadvantages of each solution in the right column and 
summarize the justification of the decision as a resolution at the bottom of the table.

[...]
4. Access control
Access in CTC is controlled at the level of TrackSections: the Dispatcher who is assigned to a 
TrackSection can modify its state, that is, open and close signals and switches and modify other devices. 
Moreover, the Dispatcher can examine the state of neighboring TrackSections without modifying 
their state. This is necessary for the Dispatcher to observe the Trains that are about to enter the 
controlled TrackSection.
Access control is implemented with an access list maintained by the TrackSection. The access list 
contains the identity of the Dispatcher who can modify the TrackSection (i.e., writers) and the identify 
of the Dispatcher who can examine the state of the track section (i.e., readers). For the sake of generality, 
the access list is implemented such that it can include multiple readers and multiple writers.
The TrackSection checks the access list for every operation that modifies or queries the state of the 
TrackSection. 
When subsystems subscribe to events, the NotificationService sends a request to the TrackSection 
to check access. The TrackSection sends a request to the NotificationService to unsubscribe 
dispatchers whose access is revoked. 
The collaboration diagram of Figure 9-14 depicts this solution.
[...]

FIGURE 9-23.Excerpt from system design document, access control section.

I[1]: How should access control of TrackSections be integrated with notification?
Access in CTC is controlled at the level of TrackSections: the Dispatcher who is assigned to a 
TrackSection can modify its state, that is, open and close signals and switches and modify other devices. 
Moreover, the Dispatcher can examine the state of neighboring TrackSections without modifying 
their state. This is necessary for the Dispatcher to observe the Trains that are about to enter the 
controlled TrackSection.

FIGURE 9-24.Reconstructed rationale for the notification access control issue of CTC.



From issues to decisions DRAFT-DO NOT DISTRIBUTE

40 of 52 Rationale

A reconstructed rationale, such as the one in Figure 9-24, costs less to capture than the 
activities we described previously. It is more difficult, however, to capture the discarded 
alternatives and the reasons of such choices, especially when decisions are revised over 
time. In Figure 9-24, the resolution states that we did not select the better proposal, and we 
were able to remember the reasons for this non optimal decision (i.e., that substantial code 
had be completed prior to this decision and we wanted to minimize code rework). 
Alternatively, reconstructing rationale is an effective tool for review, for identifying 
decisions that are inconsistent with the design goals of the project. Moreover, even if the 
reviewed decisions cannot be revised at a late stage in the project, this knowledge can 
benefit new developers assigned to the project or developers revising the system in later 
iterations.

P[1]: TrackSection class controls all state 
modification, and notification subscription access.
Access control is implemented as an access list in 
TrackSection. The TrackSection class checks 
access of the caller for every operation that examines 
or modifies state. In particular, the caller subscribes 
to notification events by invoking methods on 
TrackSection, which in turns forwards the 
request to the NotificationService if access is 
granted. This solution is illustrated in Figure 9-15.

For:
• Central solution: all protected methods related 

to the TrackSection are in one place.

P[2]: TrackSection class controls state 
modification, NotificationService controls 
subscription.
As P[1], except that the caller requests 
subscriptions to events directly from the 
NotificationService. The 
NotificationService checks access with the 
TrackSection before granting the subscription. 
This solution is illustrated in Figure 9-14.

For:
• Access independent interface: the interfaces of 

NotificationService and TrackSection 
are the same as if there was no access control 
(legacy argument).

Against:
• Circular dependency between 

NotificationService and TrackSection: 
The TrackSection invokes operations on the 
NotificationService to generate events, the 
NotificationService subscription methods 
invoke operations on the TrackSection to 
check access.

R[1]
P[2]. P[1] would have been a better solution, however, access control did not apply to notification. To 
minimize code and design rework, P[2] was selected. 

FIGURE 9-24.Reconstructed rationale for the notification access control issue of CTC.



From issues to decisions  DRAFT - DO NOT DISTRIBUTE

Rationale 41 of 52

The balance between rationale capture, maintenance, and reconstruction differs for each 
project and needs to be carefully managed. It is relatively frequent to see rationale capture 
efforts accumulate enormous amounts of information that are either useless or not easily 
accessible to developers who should benefit from such information. We focus on 
management issues next.



Managing rationale DRAFT-DO NOT DISTRIBUTE

42 of 52 Rationale

9.5. Managing rationale

In this section, we describe issues related to managing rationale activities. Recording 
justifications for design decisions is often seen as an intrusion from management into the 
work of developers, and thus, rationale techniques encounter resistance from developers 
and often degenerate into a bureaucratic process. Rationale techniques need to be carefully 
managed to be useful. In this section, we describe how to:

• write documents about rationale (Section 9.5.1),

• assign responsibilities for capturing and maintaining rationale models (Section 9.5.2),

• communicate about rationale models (Section 9.5.3),

• use issues to negotiate (Section 9.5.4), and 

• resolve conflicts (Section 9.5.5).

As before, we continue focusing on the system design activity. Note, however, that these 
techniques can be applied uniformly throughout the development.

9.5.1.  Documenting rationale

When rationale is explicitly captured and documented, tit is best described in documents 
that are separate from system model documents. For example, the rationale behind 
requirements analysis decisions is documented in the Requirements Analysis Rationale 
Document (RARD) which complements the Requirements Analysis Document (RAD). 
Similarly, the rationale behind system design decisions is documented in the System Design 
Rationale Document (SDRD), which complements the System Design Document (SDD). In this 
section, we focus on the SDRD, as system design is the activity which benefits most from 
capturing rationale. Figure 9-25 is an example of template for the SDRD.

The audience for the SDRD is the same as for the SDD. They are used by developers when 
revising decisions, by reviewers when reviewing the system, and by new developers when 
assigned to the project. The specific activities for which the rationale document is intended 
are described in the first section of the document. A document focusing on justifying the 
system for reviewers might only contain proposals and arguments relevant to the selected 
resolutions. A document capturing as much of the design context as possible might contain 
in addition all the discarded alternatives and their evaluations. The first section also repeats 
the design goals that were selected at the beginning of system design. These represent the 
criteria that developers used to evaluate alternative solutions.

The next two sections are composed of a list of issues, formatted in the same way as the 
access control issue we described earlier in Figure 9-24. The list of issue can constitute the 
systematic justification of the design or be simply a collection of issues captured in the 



Managing rationale  DRAFT - DO NOT DISTRIBUTE

Rationale 43 of 52

course of system design. Issues may be related to each other with subissue and consequent 
issue references. Finally, pointers to issues in this document can be inserted in the SDD in 
the relevant sections for ease of navigation.

The second section of the SDRD describes the rationale for the system being replaced. If 
there is no previous system, this section can be replaced by rationale for similar systems. 
The purpose of this section is to make explicit prior alternatives that have been explored and 
issues that developers should watch for.

The third section of the SDRD describes the rationale for the new system. Paralleling the 
structure of the SDD, this section is divided into seven subsections:

• Overview presents an bird view of this section, including a summary of the most 
critical issues that were dealt during system design.

System Design Rationale Document (SDRD)

Revision history

1. Introduction
1.1 Purpose of the document
1.2 Design goals
1.3 Definitions, acronyms, and abbreviations
1.4 References
1.5 Overview

2. Rationale for current software architecture

3. Rationale for proposed software architecture
3.1 Overview
3.2 Rationale for subsystem decomposition
3.3 Rationale for hardware/software mapping
3.4 Rationale for persistent data management
3.5 Rationale for access control and security
3.6 Rationale for global software control
3.7 Rationale for boundary conditions

Glossary

Appendixes

Index

FIGURE 9-25.An example of a template for the System Design Rationale Document.



Managing rationale DRAFT-DO NOT DISTRIBUTE

44 of 52 Rationale

• Rationale for subsystem decomposition justifies the selected system decomposition. How 
does it minimize coupling? How does it increases coherence? How does it satisfy the 
design goals set in the first section? More generally, any issue which impacted system 
decomposition is listed here.

• Rationale for hardware/software mapping justifies the selected hardware configuration, 
the assignment of subsystems to nodes, and legacy code issues. 

• Rationale for persistent data management justifies the selection of data storage 
mechanism. Why were flat files/relational database/object-oriented database 
selected? Which design criteria drove this decision? Which other issues should the 
storage component deal with?

• Rationale for access control and security justifies the selected access control 
implementation. Why were access lists/capabilities chosen? How is the access 
control integrated with other subsystems distributing information, such as the 
middleware or the notification subsystem? The access control issue for CTC would be 
included in this section.

• Rationale for global software control justifies the selected control mechanism. Which 
legacy component constrained the software control? Were there incompatible legacy 
components? How was this dealt with?

• Rationale for boundary conditions justifies each boundary condition and its handling. 
Why does the system check the consistency of the database at start-up? Why does the 
system give a ten minute warning to the dispatchers before shutdown (as opposed to 
20 minutes or 2 hours)?

The SDRD should be written at the same time as the SDD and revised whenever the SDD is 
revised. This ensures that both documents are consistent and encourages developers to 
make rationale explicit. The SDRD should be revised not only when the design is changed, 
but also when missing rationale is found (e.g., during reviews).

9.5.2.  Assigning responsibilities

Assigning responsibilities for capturing and maintaining rationale is the most critical 
management decision in making rationale models useful. Maintaining rationale can easily 
be perceived as an intruding bureaucratic process through which developers need to justify 
all decisions. Instead, rational models should be maintained by a small number of people 
who have access to all developers information, such as drafts of design documents and 
developer newsgroups. This small group of people, becoming historians of the system 
design, become useful to the other developers when providing rationale information, and 
thus, create an incentive to developers to provide them with information. Below are the 
main roles related to rationale model maintenance:



Managing rationale  DRAFT - DO NOT DISTRIBUTE

Rationale 45 of 52

• The minute taker records rationale in meetings. This includes recording 
chronological statements during the meeting and restructuring them with issues after 
the meeting (see Section 9.4.2).

• The rationale editor collects and organizes information related to rationale. This 
includes obtaining the meeting minutes from the minute taker, prototype and 
technology evaluations reports from developers, and drafts of all system models and 
design documents from the technical writers. The rationale editor imposes minimal 
overhead on the developers and the writers by performing the structuring and 
indexing role. The developers need not provide information structured as issue 
models, however, the rationale editor constructs index all information as issues.

• The reviewer examines the rationale captured by the rationale editor and identifies 
holes to be reconstructed. The reviewer then collects the relevant information from 
communication records and, if necessary, from the developers. This role should not 
be a management role or a quality assurance role: the reviewer must directly benefit 
the developers in order to be able to collect valid information. This role can be 
combined with the rationale editor role.

The size of the project determines the number of minute takers, rationale editors, and 
reviewers. The following heuristics can be used for assigning these roles:

• One minute taker per team. Meetings are usually organized by subsystem team or by 
cross functional team. A developer of each team can function as a minute taker, thus 
distributing this time consuming role across the project.

• One rationale editor per project. The role of rationale editor for a project is a full time 
role. Unlike the role of minute taker which can be rotated, the role of rationale editor 
requires consistency and should be assigned to a single person. In small projects, this 
role can be assigned to the system architect (see Chapter 8, System Design).

• Increase the number of reviewers after delivery. When the system is delivered and the 
number of developers directly need for the project decreases, some developers 
should be assigned the reviewer role for salvaging and organizing as much 
information as possible. Rationale information is still recoverable from developers 
memories but disappears quickly as developers move to other projects.

9.5.3.  Heuristics for communicating about rationale

A large part of communication is rationale information, given that argumentation is, by 
definition, rationale (see Section 9.2). Developers argue about design goals, whether a given 
issue is relevant or not, the benefit of several solutions, and their evaluation. Rationale 
constitutes a large and complex body of information, usually larger than the system itself. 
Argumentation, moreover, occurs most often in small forums, for example, in a team 
meeting or a conversation at the coffee machine. The challenge of communicating about 



Managing rationale DRAFT-DO NOT DISTRIBUTE

46 of 52 Rationale

rationale is to make this information accessible to all concerned parties without causing an 
information overload. In this chapter, we focused on techniques for capturing and 
structuring rationale, such as using issue models in minutes, follow-up conversations, and 
rationale documentation. In addition, the following heuristics can be used to increase the 
structure of rationale and facilitate its navigation:

• Name issues consistently. Issues should be consistently and uniquely named across 
minutes, newsgroups, email messages, and documents. Issues can have a number 
(e.g., 1291) and a short name (e.g., “the access/notification issue”) for ease of 
reference.

• Centralize issues. Although issues will be discussed in a variety of context, encourage 
one context (e.g., a newsgroup or an issue base) to be a central repository of issues. 
This issue-base should be maintained by the rationale editor but could be used and 
extended by any developer. This enables developers to search for information 
quickly.

• Cross reference issues and system elements. Most issues apply to a specific element in the 
system models (e.g., a use case, an object, a subsystem). Finding which model 
element a specific issue applies to is straightforward. However, finding which issues 
apply to a specific model element is a much more difficult problem. To facilitate this 
type of query, issues should be attached to the applying model element when issues 
are raised.

• Manage change. Rationale evolves as system models do. Thus, configuration 
management should be applied consistently to rationale and documents as it is 
applied to system models.

Capturing and structuring rationale not only improves communication about rationale, but 
also facilitates communication about the system models. Integrating both rationale and 
system information enables developers to better maintain both types of information.

9.5.4.  Issue modeling and negotiation

Most important decisions in development are the result of negotiation. Different parties 
representing different, and often conflicting, interests come to a consensus on some aspect of 
the system: Requirements analysis includes the negotiation of functionality with a client. 
System design includes the negotiation of subsystem interfaces among developers. 
Integration includes the resolution of conflicts between developers. We use issue-modeling 
to represent the information exchanged during these negotiations in order to capture 
rationale. We can also use issue-modeling to facilitate negotiations.

Traditional negotiation, which consists of bargaining over positions, is often time 
consuming and inefficient, especially when the negotiating parties hold incompatible 
positions. Effort is spent in defending one’s position, citing all its advantages, while the 



Managing rationale  DRAFT - DO NOT DISTRIBUTE

Rationale 47 of 52

opposing part spends effort in denigrating the other’s position, citing all its disadvantages. 
The negotiation either progresses in small steps towards a consensus or is ended by an 
arbitrary solution to the negotiated issue. Furthermore, this can occur even when 
negotiating parties have compatible interests: when defending positions, people have 
greater trouble evolving or changing their position without losing credibility. The Harvard 
method of negotiation [Fischer et. al., 1991] addresses these points by taking the focus away 
from positions. We rephrase several important points of the Harvard method in terms of 
issue modeling:

• Separate developers from proposals. Developers can spent a lot of resources developing a 
specific proposal (i.e., a position), to the point that a criticism of the proposal is taken 
as a personal criticism of the developer. Developers and proposals should be 
separated in order to make it easier to evolve or discard a proposal. This can be done 
by having multiple developers work on the same proposal or have all concerned 
parties participate in the development of all proposals. Separating the design and the 
implementation work can further facilitate this distinction. By ensuring that 
negotiation comes before implementation and before substantial resources are 
committed, developers are able to evolve proposals into ones that all can live with.

• Focus on criteria, not on proposals. As stated before, most arguments can be tracked to 
the criteria, often implicit, used for evaluation. Once an accepted set of criteria is in 
place, evaluating and selecting proposals is far less controversial. Furthermore, 
criteria are much less subject to change than other factors in the project. Agreeing on 
criteria early also facilitates revisions to decisions.

• Take into account all criteria instead of maximizing a single one. Different criteria reflect 
interests of different parties. Performance criteria are usually motivated by usability 
concerns. Modifiability criteria are motivated by maintenance concerns. Even if some 
criteria are considered higher priority that other ones, optimizing only these high 
priority criteria risks leaving out of the negotiation one or more parties.

Viewing development as a negotiation acknowledges the social aspects of development. 
Developers are persons who, in addition to technical opinions, can have an emotional 
perspective on different solutions. This can influence (and sometimes interfere) with their 
relationships to other developers as conflicts arise. Using issue-modeling to capture 
rationale and drive decisions can integrate and improve both the technical and social 
aspects of development.

9.5.5.  Conflict resolution strategies

Occasionally, project participants fail to come to a consensus through negotiation. In such 
cases, it is critical that conflict resolution strategies are already in place to deal with the 
situation. The worst design decisions are those which are not taken because of the lack of 



Managing rationale DRAFT-DO NOT DISTRIBUTE

48 of 52 Rationale

consensus or the absence of conflict resolution strategies. This delays critical decision until 
late in the development, resulting in high redesign and recording costs.

Many different conflict resolution strategies are possible. For example, consider the five 
following strategies:

• Majority wins. In case of conflict, a majority vote could remove the deadlock and 
resolve the decision. Several collaboration tools enable users to attach weights to 
different arguments in the issue model, and thus, to compute which proposal should 
be selected with an arithmetic formula [Purvis et al, 1996]. This assumes that the 
opinion of each participants matters equally and that, statistically, the group makes 
the right decisions.

• Owner has last word. In this strategy, the owner of an issue (the person who raised it) is 
responsible for deciding the outcome. This assumes that the owner has the largest 
stake in the issue. 

• Management is always right. An alternative strategy is to fall back on the 
organizational hierarchy. If a group is unable to reach consensus, the manager of the 
group imposes a decision based on the argument. This assumes the manager is able 
of understanding the argument and making the right trade-offs.

• Expert is always right. In this strategy, an external expert, foreign to the debate, assess 
the situation and advises the best course of action. For example, during requirements 
analysis, a test user can be interviewed to evaluate the different proposals of an issue. 
Unfortunately, such an expert has limited knowledge of other system decisions or 
more generally of the design context.

• Time decides. As an issue is left unresolved, time becomes a pressure and forces a 
decision. Also, controversial issues may become easier to resolve as other decisions 
are made and other aspects of the system defined. The danger with this strategy is 
that it leads to decisions that optimize short term criteria (such as ease of 
implementation) and disregard long term criteria (such as modifiability and 
maintainability).

The Majority wins and the Owner has last word strategies do not work well. They both result 
in inconsistent results (multiplicity of decision makers) and in decisions that are not well 
supported by the rest of the participants. The Management is always right and Expert is always 
right strategies lead to better technical decision and better consensus when the Manager and 
the Expert are sufficiently knowledgeable. The Time decides strategy is a fallback, albeit one 
that may result in costly rework. 

In practice, we first attempt to reach consensus, and, in case of lack of consensus, fallback on 
an expert or management strategy. If the expert or manager strategy fails, we let time decide 
or take a binding majority vote.



Exercises  DRAFT - DO NOT DISTRIBUTE

Rationale 49 of 52

9.6. Exercises

1. Below is an excerpt from a system design document for an accident management 
system. It is a natural language description of the rationale for a relational database 
for permanent storage. Model this rationale with issues, proposals, arguments, 
criteria, and resolutions, as defined in Section 9.3.

2. In Section 9.3, we examined an issue related to access control and notification in the 
CTC system. Select a similar issue that could occur in the development and CTC and 
populate it with relevant proposals, criteria, arguments, and justify a resolution. 
Example of such issues include:

• How should consistency between the mainServer and its hotBackup?

• How should failure of the mainServer be detected and the subsequent switch to the 
hotBackup implemented?

3. You are developing a CASE tool using UML as its primary notation. You are 
considering the integration of rationale into the tool. Describe how a developer could 
attach issues to different model elements. Draw a class diagram of the issue model 
and its association to model elements.

4. Considering the same CASE tool as in Exercise 3. You are considering the generation 
of rationale documents from the model. Describe the mapping between classes, 
issues, and the sections rationale document.

5. You are integrating a bug reporting system with a configuration management tool to 
track bug reports, bug fixes, feature requests, and enhancements. You are considering 
an issue model for integrating these tools. Draw a class diagram of the issue model, 

“One fundamental issue in database design was database engine realization. The initial non-
functional requirements on the database subsystem insisted on the use of an object-oriented 
database for the underlying engine. Other possible options included using a relational database, a 
file system, or a combination of the other options. An object-oriented database has the advantages 
of being able to handle complex data relationships and is fully buzz word compliant. On the other 
hand, OO databases may be too sluggish for large volumes of data or high frequency accesses. 
Furthermore, existing products do not integrate well with CORBA since that protocol does not 
support specific programming language features such as Java associations. Using a relational 
database offers a more robust engine with higher performance characteristics and a large pool of 
experience and tools to draw upon. Furthermore, the relational data model integrates nicely with 
CORBA. On the down side, this model does not easily support complex data relationships. The 
third option was proposed to handle specific types of data which are written once and read 
infrequently. This type of data (including sensor readings and control outputs) has few 
relationships with little complexity and must be archived for extended periods of time. Files offer 
an easy archival solution and can handle large amounts of data. Conversely, any code would need 
to be written from scratch including serialization of access. We decided to use only a relational 
database, based on the requirement to use CORBA and in light of the relative simplicity of the 
relationships between the system’s persistent data.”



Exercises DRAFT-DO NOT DISTRIBUTE

50 of 52 Rationale

the corresponding discussion, configuration management, and bug reporting 
elements.



References  DRAFT - DO NOT DISTRIBUTE

Rationale 51 of 52

9.7. References

[Buckingham Shum & Hammond, 1994]  S. Buckingham Shum & N. Hammond,
“Argumentation-based design rationale: what use at what cost?,” International Journal of
Human-Computer Studies, 40, 603-52, 1994.

[Conklin & Burgess-Yakemovic, 1991] J. Conklin & KC Burgess Yakemovic, “A Process-
oriented Approach to Design Rationale,” Human-Computer Interaction, 6 (3 & 4): 357-91,
1991.

[Dutoit et al.; 1996] A.H. Dutoit, B. Bruegge, & R.F. Coyne, “The use of an issue-based model
in a team-based software engineering course.” Conference proceedings of Software
Engineering: Education and Practice (SEEP’96). Dunedin, New Zealand. January 1996.

[Fischer et. al., 1991] R. Fisher, W. Ury, & B. Patton. Getting to Yes: Negotiating Agreement
Without Giving In (Second edition). Penguin Books. 1991.

[Kunz & Rittel, 1970] W. Kunz & H. Rittel, Issues as elements of information systems
(Working Paper No. 131). Institut fuer Grundlagen der Plannung, Universitaet Stuttgart,
1970.

[Lee, 1990] J. Lee, “A qualitative decision management system,” In P.H Winston & S.
Shellard (Eds.), ARTIFICIAL Intelligence at MIT: Expanding Frontiers. Cambridge, MA, MIT
Press. Vol 1, 104-33, 1990.

[Lee, 1997] J. Lee, “Design Rationale Systems: Understanding the Issues.”, IEEE Expert,
May/June 1997.

[MacLean et. al, 1991] A. MacLean, R.M. Young, V. Bellotti, & T. Moran, “Questions,
Options, and Criteria: Elements of Design Space Analysis,” Human-Computer Interaction, 6
(3&4): 201-50, 1996.

[Moran & Carroll, 1996] T.P. Moran & J.M. Carroll (Eds.), Design Rationale: Concepts,
Techniques, and Use, Lawrence Erlbaum Associates, NJ, 1996.

[Potts & Bruns, 1988] C. Potts & G. Bruns, “Recording the Reasons for Design Decisions,” In
Proceedings of the 10th International Conference on Software Engineering, 418-27, 1988.

[Potts, 1996] C. Potts, “Supporting Software Design: Integrating Design Methods and
Design Rationale,” In T.P. Moran & J.M. Carroll (Eds.) Design Rationale: Concepts,
Techniques, and Use. Lawrence Erlbaum Associates, Mahwah, N.J., 1996.

[Purvis et al, 1996] M. Purvis, M. Purvis, & P. Jones. “A Group Collaboration Tool for
Software Engineering Projects,” Conference proceedings of Software Engineering:
Education and Practice (SEEP’96). Dunedin, New Zealand. January 1996.

[Shipman & McCall, 1997] F.M. Shipman III & R.J. McCall, “Integrating Different
Perspectives on Design Rationale: Supporting the Emergence of Design Rationale from
Design Communication,” Artificial Intelligence in Engineering Design, Analysis, and
Manufacturing, Vol. 11, No. 2, 1997.



References DRAFT-DO NOT DISTRIBUTE

52 of 52 Rationale


