
September 8, 1998

DRAFT - DO NOT DISTRIBUTE

8. System Design

There are two ways of constructing a software design: One way is to
make it so simple that there are obviously no deficiencies, and the other
way is to make it so complicated that there are no obvious deficiencies.

– C.A.R. Hoare

System design is the transformation of the requirements analysis model into a system design
model. The system design model views a system as a collection of subsystems, their
dependencies, and their interfaces.The system design model includes all decisions
impacting the overall system structure, also called the software architecture. System design
is not algorithmic. Professionals and academics have, however, developed pattern solutions
to common problems and defined notations for representing software architectures. In this
chapter, we first present these building blocks that are available to you during system
design and then discuss the design activities that have impact on these buildings blocks. In
particular, system design includes:

• the definition of design goals,

• the decomposition of the system into subsystems,

• the selection off-the-shelf and legacy components,

• the mapping of subsystem to hardware,

• the selection of a persistent data management infrastructure,

• the selection of an access control policy,

• the selection of a global control flow mechanism, and

• the handling of boundary conditions.

We conclude this chapter by describing management issues related to system design.

Introduction: a floorplan example DRAFT-DO NOT DISTRIBUTE

2 of 76 System Design

8.1. Introduction: a floorplan example

System design, object design, and implementation constitute the construction of the system.
During these three activities, developers fill the gap between the system specification,
produced during requirements analysis, and reality, that is, the system that is delivered to
the users. System design is the first step in this process and focuses on decomposing the
system into manageable parts. During requirements analysis, we concentrated on the
purpose and the functionality of the system. During system design, we focus on the
processes, datastructures, software and hardware components necessary to implement it.
The challenge of system design is that many conflicting criteria and constraints need to be
met when decomposing the system.

Consider, for example, the task of designing a residential house. After agreeing with the
client on the number of rooms and floors, the size of the living area, and the location of the
house, the architect must design the floorplan, that is, where the walls, doors, and windows
should be located. He must do so according to a number of functional requirements: the
kitchen should be close to the dining room and the garage, the bathroom should be close to
the bedrooms, and so on. The architect can also rely on a number of standards when
establishing the dimensions of each room and the location of the door: kitchen cabinets
come in fixed increments and beds come in standard sizes (e.g., in the U.S., twin size, queen
size, and king size). Note, however, that the architect does not need to know the exact
content of each room and the layout of the furniture, on the contrary, these decisions should
be delayed and left to the client.

Figure 106 shows three successive revisions to a floor plan for a residential house. We set out
to satisfy the following constraints:

1. This house should have two bedrooms, a study, a kitchen, and a living room area.

2. The overall distance the occupants walk every day should be minimized.

3. The use of daylight should be maximized.

To satisfy the above constraints, we assume that most of the walking will be done between
the entrance door and the kitchen, when groceries are unloaded from the car, and between
the kitchen and the living/dining area, when dishes are carried before and after the meals.
The next walking path to minimize is the path from the bedrooms to the bathrooms. We
assume that the occupants of the house will spend most of their time in the dining area and
in the master bedroom.

In the first version of our floorplan (at the top of Figure 106), we find that the dining room is
too far from the kitchen. To address this problem, we exchange it with bedroom 2 (see gray
arrows in Figure 106). This has also the advantage of moving the living room to the south
wall of the house. In the second revision, we find that the kitchen and the stairs are too far

Introduction: a floorplan example DRAFT - DO NOT DISTRIBUTE

System Design 3 of 76

from the entrance door. To address this problem, we move the entrance door to the north
wall. This allows us to rearrange bedroom 2 and move the bathroom closer to both
bedrooms. The living area increased, and we satisfied all constraints we originally set out.

At this point, we can position the doors and the windows of each room to meet localized
requirements. Once this is done, we have completed the design of the floor, without detailed
knowledge of the layout of each individual room. Plans for plumbing, electrical lines, and
heating ducts can proceed.

The design of a floorplan in architecture is similar to system design in software engineering.
The whole is divided into simpler components (i.e., rooms, subsystems) and interfaces (i.e.,
doors, services) while taking into account nonfunctional (i.e., living area, response time) and
functional (i.e., number of bedrooms, use cases) requirements. System design impacts
implementation activities (i.e., the kitchen layout, the coding complexity of individual
subsystems) and results in costly rework if changed later (i.e., moving walls, changing
subsystem interfaces). The design of individual components is delayed until later.

In Section 8.2, we provide you with a bird view of system design and its relationship to
requirements analysis. In Section 8.3, we describe the concept of subsystems and subsystem
decomposition. In Section 8.4, we describe system design activities and illustrate how these
building blocks can be used together using an example. In Section 8.5, we describe
management issues related to system design.

Introduction: a floorplan example DRAFT-DO NOT DISTRIBUTE

4 of 76 System Design

FIGURE 106.Example of floorplan design. Three successive versions show how we
minimize walking distance and take advantage of sunlight.

Master
BedroomDinning

Hallway

Master
Bedroom

Dining

Bedroom2

Hallway

Stairs

Stairs

Master
Bedroom

Bedroom 2

Dining

Hallway

Stairs

Entrance door

Entrance door

Entrance door

Initial version

Second version

Third version

N

An overview of system design DRAFT - DO NOT DISTRIBUTE

System Design 5 of 76

8.2. An overview of system design

Requirements analysis results in the requirements model described by the following
products:

• a set of nonfunctional requirements and constraints, such as maximum response time,
minimum throughput, reliability, operating system platform, and so on.

• a use case model, describing the functionality of the system from the actors’ point of
view,

• an object model, describing the entities manipulated by the system

• a sequence diagram for each use case, showing the sequence of interactions among
objects participating in the use case,

The requirements analysis model describes the system completely from the actors’ point of
view and serves as the basis of communication between the client and the developers. The
requirements analysis model, however, does not contain information about the internal
structure of the system, its hardware configuration, or, more generally, how the system
should be realized. System design is the first step in this direction. System design results in
the following products:

• A list of design goals, describing the qualities of the system that developers should
optimize.

• A software architecture, describing the subsystem decomposition in terms of their
responsibilities, their dependencies, their mapping to hardware, and major policy
decisions such as control flow, access control, data storage.

The design goals are derived from the nonfunctional requirements. They guide the decisions
to be made by the developers especially when trade-offs are needed. The subsystem
decomposition constitutes the bulk of system design. Developers divide the system into
manageable pieces to deal with complexity: each subsystem is assigned to a team and
realized independently. In order for this to be possible, though, developers need to address
system wide issues when decomposing the system. In particular, they need to address the
following issues:

• Hardware/software mapping: What is the hardware configuration of the system? Which
node is responsible for which functionality? How is communication between nodes
realized? Which services are realized using existing software components? How are
these components encapsulated? Addressing hardware/software mapping issues
often leads to the definition of additional subsystems dedicated to moving data from
one node to another, dealing with concurrency, and reliability issues. Off-the-shelf
components enable developers to realize complex services more economically. User
interface packages and database management systems are prime examples of off-the-
shelf components. Components, however, should be encapsulated to minimize

An overview of system design DRAFT-DO NOT DISTRIBUTE

6 of 76 System Design

dependencies on a particular component: a competing vendor may come with a
better component.

• Data management: Which data need to be persistent? Where should persistent data be
stored? How is it accessed? Persistent data represents a bottleneck in the system on
many different fronts: most functionality in system is concerned with creating or
manipulating persistent data. For this reason, access to the data should be fast and
reliable. If retrieving data is slow, the whole system will be slow. If data corruption is
likely, complete system failure is likely. These issues need to be addressed
consistently at the system level. Often, this leads to the selection of a database
management system and of an additional subsystem dedicated to the management of
persistent data.

• Access control: Who can access which data? Once an actor has access to data, can it
modify it? Can access control change dynamically? How is access control specified
and realized? Access control and security are system wide issues. The access control
must be consistent across the system, in other words, the policy used to specify who
can and cannot access certain data should be the same across all subsystems.

• Control flow: How does the system sequence operations? Is the system event driven?
Can it handle more than one user interaction at a time? The choice of control flow has
an impact on the interfaces of subsystems. If an event-driven control flow is selected,
subsystems will provide event handlers. If threads are selected, subsystems need to
guarantee mutual exclusion in critical sections.

• Boundary conditions: How is the system initialized? How is it shutdown? How are
exceptional cases detected and handled? System initialization and shutdown often
represent the larger part of the complexity of a system, especially in a distributed
environment. Initialization, shutdown, and exception handling have an impact on
the interface of all subsystems.

Figure 107 depicts the activities of system design. Each activity addresses one of the issues
we described above. Addressing any one of these issues can lead to changes in the
subsystem decomposition and to raising new issues. As you will see when we describe each
of these activities, system design is a highly iterative activity, constantly leading to the
identification of new subsystems, the modification of existing subsystems, and system wide
revisions that impact all subsystems. But first, let us describe in more detail subsystems.

An overview of system design DRAFT - DO NOT DISTRIBUTE

System Design 7 of 76

FIGURE 107.The activities of system design (UML activity diagram).

Describe boundary
conditions

Define Define
subsystems

Map subsystems
to hardware/

Manage

Select a

Define access

design goals

persistent data

control policies

global

Implement
subsystems

software platform

control flow

Subsystem decomposition DRAFT-DO NOT DISTRIBUTE

8 of 76 System Design

8.3. Subsystem decomposition

In this section, we describe in more detail subsystem decompositions and their properties.
First, we define the concept of subsystem and their relationship to classes (Section 8.3.1).
Next, we look at the interface of subsystems (Section 8.3.2): subsystems provide services to
other subsystems. A service is a set of related operations that share a common purpose.
During system design, we define the subsystems in terms of the services they provide. Later,
during object design, we define the subsystem interface in terms of the operations they
provide. Next, we look at two properties of subsystems: coupling and coherence
(Section 8.3.3). Coupling measures the dependencies between two subsystems while
coherence measures the dependencies among classes within a subsystem. Ideal subsystem
decomposition should minimize coupling and maximize coherence. Next, we look at
layering and partitioning, two techniques for relating subsystems to each other
(Section 8.3.4). Layering allows a system to be organized as a hierarchy of subsystems, each
providing higher level services to the subsystem above it using lower level services from the
subsystems below it. Partitioning organizes subsystems as peers that mutually provide
different services to each other. Finally, in Section 8.3.5, we describe a number of typical
software architectures that are found in practice.

8.3.1. Subsystems and classes

In Chapter 7, Requirements Analysis we introduced the distinction between application
domain and solution domain. In order to reduce the complexity of the application domain,
we identified smaller parts called classes and organized them into packages. Similarly, to
reduce the complexity of the solution domain, we decompose a system into simpler parts,
called subsystems, which are made of a number of solution domain classes. In the case of
complex subsystems, we recursively apply this principle and decompose a subsystem into
simpler subsystems (see Figure 108).

FIGURE 108.Subsystem decomposition (UML class diagram).

Class
parts

*System Part
*

Subsystem

Subsystem decomposition DRAFT - DO NOT DISTRIBUTE

System Design 9 of 76

For example, the accident management system we previously described can be decomposed
into a DispatcherInterface subsystem implementing the user interface for the
Dispatcher, a FieldOfficerInterface subsystem implementing the user interface for the
FieldOfficer, an IncidentManagement subsystem implementing the creation,
modification, and storage of Incidents, and a Notification subsystem implementing the
communication between FieldOfficer terminals and Dispatcher stations. This
subsystem decomposition is depicted in Figure 109 using UML packages.

Several programming languages (e.g., Java and Modula-2) provide constructs for modeling
subsystems (packages in Java, modules in Modula-2). In other languages, such as C or C++,
subsystems are not explicitly modeled, in which case, developers use conventions for
grouping classes (e.g., a subsystem can be represented as a directory containing all the files
implementing the subsystem). Whether or not subsystems are explicitly represented in the
programming language, developers need to carefully document the subsystem
decomposition as subsystems are usually realized by different teams.

8.3.2. Services and subsystem interfaces

A subsystem is characterized by the services it provides to other subsystems. A service is a
set of related operations that share a common purpose. A subsystem providing a
notification service, for example, defines operations to send notices, lookup notification
channels, subscribe and unsubscribe to a channel.

FIGURE 109.Subsystem decomposition for an accident management system (UML class
diagram, collapsed view). Subsystems are shown as UML packages. Dashed arrows
indicate dependencies between subsystems.

FieldOfficerInterface DispatcherInterface

Notification IncidentManagement

Subsystem decomposition DRAFT-DO NOT DISTRIBUTE

10 of 76 System Design

The set of operations of a subsystem that are available to other subsystems form the
subsystem interface. The subsystem interface, also referred to as the application
programmer interface (API), includes the name of the operations, their parameters, their
types, and their return values. System design focuses on defining the services provided by
each subsystem, that is, enumerating the operations, their parameters, and their high level
behavior. Object design will focus on defining the subsystem interfaces, that is, the type of
the parameters and the return value of each operation.

The definition of a subsystem in terms of the services it provides help us focus on its
interface as opposed to its implementation. A good subsystem interface should provide as
little information about its implementation. This allows us to minimize the impact of change
when we revise the implementation of a subsystem. More generally, we want to minimize
the impact of change by minimizing the dependencies among subsystems.

8.3.3. Coupling and coherence

Coupling is the strength of dependencies between two subsystems. If two subsystems are
loosely coupled, they are relatively independent, and thus, modifications to one of the
subsystem will have little impact on the other. If two subsystems are strongly coupled,
modifications to one subsystem is likely to have impact on the other. A desirable property of
a subsystem decomposition is that subsystems are as loosely coupled as possible. This
minimizes the impact that errors or future changes have on the correct operation of the
system.

Subsystem decomposition DRAFT - DO NOT DISTRIBUTE

System Design 11 of 76

Binary tree representation

Sharing through attributes

class OpNode {
ArgNode left;
ArgNode right;
String name;

}
class ArgNode {

String name;
}

Sharing through operations

class OpNode {
Enumeration getArguments();
String getName();

}

class ArgNode {
String getName();

}

FIGURE 110. Example of coupling reduction (UML object diagram and Java
declarations). This figure shows a parse tree for the expression “a + b + c”. The left column
shows the interface of the OpNode class when sharing through attributes. The right column
shows the interface of OpNode when sharing through operations. Figure 111 shows the
changes for each case when a linked list is selected instead.

add1:OpNode

add2:OpNode

c:ArgNodeb:ArgNode

a:ArgNode

Subsystem decomposition DRAFT-DO NOT DISTRIBUTE

12 of 76 System Design

Consider, for example, a compiler in which a parse tree is produced by the syntax analysis
subsystem and handed over to the semantic analysis subsystem. Both subsystems access
and modify the parse tree. An efficient way for sharing large amounts of data is to allow
both subsystems to access the nodes of the tree via attributes. This introduces, however, a
tight coupling: both subsystems need to know the exact structure of the parse tree and its
invariants. Figure 110 and Figure 111 show the effect of changing the parse tree data
structure for two cases: the left column shows the class interfaces when attributes are used
for sharing data; the right column shows the class interfaces when operations are used.
Since both the syntactic analyzer and the semantic analyzer depend on these classes, both
subsystems would need to be modified and re-tested in the case depicted by the left column.
In general, sharing data via attributes increases coupling and should be avoided.

Coherence is the strength of dependencies within a subsystem. If a subsystem contains many
objects which are related to each other and perform similar tasks, its coherence is high. If a
subsystem contains a number of unrelated objects, its coherence is low. A desirable property
of a subsystem decomposition is that it leads to subsystems with high coherence.

Linked list representation

Sharing through attributes

class OpNode {
ArgNode first;
ArgNode left;
ArgNode right;
String name;

}
class ArgNode {

String name;
ArgNode next;

}

Sharing through operations

class OpNode {
Enumeration getArguments();
String getName();

}

class ArgNode {
String getName();

}

FIGURE 111.Example of coupling reduction (UML object diagram and Java declarations).
This figure shows the impact of changing the parse tree representation of Figure 110 to a
linked list. In the left column, where data is shared through attributes, four attributes need
to change (changes indicated in italics). In the right column, where data is shared through
operations, the interface remains unchanged.

add:OpNode

c:ArgNodeb:ArgNodea:ArgNode

Subsystem decomposition DRAFT - DO NOT DISTRIBUTE

System Design 13 of 76

For example, consider a decision tracking system for recording design problems,
discussions, alternative evaluations, decisions, and their implementation in terms of tasks
(see Figure 112).

DesignProblem and Alternative represent the exploration of the design space: we
formulate the system in terms of a number of DesignProblems, document each
Alternative they explore. The Criterion class represents the qualities in which we are
interested. Once we assessed the explored Alternatives against desirable Criteria, we
take Decisions and implement them in terms of Tasks. Tasks are recursively decomposed

FIGURE 112.Decision tracking system (UML class diagram). The DecisionSubsystem
has a fairly low coherence: the classes Criterion, Alternative, and DesignProblem
have no relationships with Subtask, ActionItem, and Task. Figure 113 depicts a better
subsystem decomposition which increases coherence.

Alternative

Decision

Criterion

subtasks

*
SubTask

ActionItem

DesignProblem

Task

assesses

solvableBy

resolvedBy

based-on

* * *

implementedBy

DecisionSubsystem

Subsystem decomposition DRAFT-DO NOT DISTRIBUTE

14 of 76 System Design

into Subtasks small enough to be assigned to individual developers. We call atomic tasks
ActionItems.

The decision tracking system is small enough that we could lump all these classes into one
subsystem called DecisionSubsystem (see Figure 112). However, we observe that the class
model can be partitioned into two subgraphs, one, called the RationaleSubsystem,
containing the classes DesignProblem, Alternative, Criterion, and Decision, the other,
called the PlanningSubsystem containing Task, Subtask, and ActionItem (see

FIGURE 113.Alternative subsystem decomposition for the decision tracking system of
Figure 112 (UML class diagram). The coherence of the RationaleSubsystem and the
PlanningSubsystem are higher than the coherence of the original DecisionSubsystem.
Note also that we also reduced the complexity by decomposition the system into smaller
subsystems.

Alternative

Decision

Criterion

subtasks

*
SubTask

ActionItem

DesignProblem

Task

assesses

solvableBy

resolvedBy

based-on

* * *

implementedBy

RationaleSubsystem

PlanningSubsystem

Subsystem decomposition DRAFT - DO NOT DISTRIBUTE

System Design 15 of 76

Figure 113). Both subsystems have a better coherence than the original
DecisionSubsystem. Moreover, the resulting subsystems are smaller than the original
subsystem: we reduced complexity. The coupling between the new subsystems is relatively
low, as there is only one association between the two subsystems.

In general, there is a trade-off between coherence and coupling. We can always increase
coherence by decomposing the system into smaller subsystems. However, this also increases
coupling as the number of interfaces increases. A good heuristic is that developers can deal
with 7±2 concepts at any one level of abstraction. If there are more than 9 subsystems at any
given level of abstraction or if there is a subsystem providing more than 9 services, you
should consider a revision of the decomposition. By the same token, the number of layers
should not be more than 7±2. In fact, many good systems design can be done with just 3
layers.

8.3.4. Layers and partitions

The goal of system design is to manage complexity by dividing the system into smaller,
manageable pieces. This can be done by a divide and conquer approach, where we
recursively divide parts until they are simple enough to be handled by one person or one
team. Applying this approach systematically leads to a hierarchical decomposition in which
each subsystem, or layer, provides higher level services using services provided from lower
level subsystems (see Figure 114). Each layer can only depend on lower level layers and has
no knowledge of the layers above it. In a closed architecture, each layer can only depend on
the layers immediately below it. In an open architecture, a layer can also access layers at
deeper levels.

FIGURE 114.Subsystem decomposition of a system into 3 layers (UML object diagram). A
subset from a layered decomposition that includes at least one subsystem from each layer
is called a vertical slice. For example, the subsystems A, B and E constitute a vertical slice,
whereas the subsystems D and G do not.

F:SubsystemE:Subsystem G:Subsystem

D:SubsystemC:SubsystemB:Subsystem

A: Subsystem Layer 1 (Top)

Layer 2

Layer 3 (Bottom)

Subsystem decomposition DRAFT-DO NOT DISTRIBUTE

16 of 76 System Design

An example of a closed architecture is the Reference Model of Open Systems
Interconnection (in short, the OSI model) is composed of seven layers [Tanenbaum, 1996].
Each layer is responsible for performing a well defined function. In addition, each layer
provides its services by using services by the layer below. The Physical layer represents the

hardware interface to the network. It is responsible for transmitting bits over a
communication channels. The DataLink layer is responsible for transmitting data frames
without error using the services of the Physical layer. The Network layer is responsible for

FIGURE 115.An example of closed architecture: the OSI model (UML class diagram). The
OSI model decomposes network services into seven layers, each responsible for a different
level of abstraction.

Application

Presentation

Session

Transport

Network

DataLink

Physical

Frame

Packet

Bit

Connection

Format

Message

Subsystem decomposition DRAFT - DO NOT DISTRIBUTE

System Design 17 of 76

transmitting and routing packets within a network. The Transport layer is responsible for
ensuring that the data is reliably transmitted from end to end. The Transport layer is the
interface Unix programmers see when transmitting information over TCP/IP sockets
between two processes. The Session layer is responsible for the initialization of a
connection, including authentication. The Presentation layer performs data
transformation services, such as byte swapping or encryption. The Application layer is the
system you are designing (unless you are building an operating system or protocol stack).
The application layer can also consist of layered subsystems.

FIGURE 116.An example of closed architecture (UML class diagram). CORBA enables the
access of objects implemented in different languages on different hosts. CORBA
effectively implements the Presentation and Session layers of the OSI stack.

Application

Presentation

Session

Transport

Network

DataLink

Physical

Socket

CORBA

TCP/IP

Object

Ethernet Wire

Subsystem decomposition DRAFT-DO NOT DISTRIBUTE

18 of 76 System Design

Until recently, only the four bottom layers of the OSI model were well standardized. Unix
and many desktop operating systems, for example, provide interfaces to TCP/IP which
implements the Transport, Network, and Datalink layers. As an application developer,
you still needed to fill the gap between the Transport layer and the Application layer.
With the growing number of distributed applications, this gap motivated the development
of middleware such as CORBA [OMG, 1995] and Java RMI [RMI, 1998]. CORBA and Java
RMI enable you to access remote objects transparently, by sending messages to them as you
send messages to local objects, effectively implementing the Presentation and Session
layers (see Figure 116).

An example of an open architecture is the Motif user interface toolkit for X11 [Nye et. al,
1992]. The lowest layer, Xlib provides basic drawing facilities and defines the concept of
window. Xt provides tools for manipulating user interface objects, called widgets, using
services from Xlib. Motif is a widget library which provides a wide range of facilities, from
buttons to geometry management. Motif is built on top of Xt but also accesses Xlib directly.
Finally, an application using Motif, such as a window manager, can access all three layers.
Motif has no knowledge of the window manager and Xt has no knowledge of Motif or of
the application. Many other user interface toolkits for X11 have open architectures. The
openness of the architecture allows developers to bypass the higher level layers in case of
performance bottleneck.

Closed layered architectures have desirable properties: they lead to low coupling between
subsystems and subsystems can be integrated and tested incrementally. Each level,
however, introduces a speed and storage overhead which may make it difficult to meet
nonfunctional requirements. Also, adding functionality to the system in later revisions may
prove difficult, especially when the additions were not anticipated. In practice, a system is
rarely decomposed into more than three to five layers.

Another approach to dealing with complexity is to partition the system into peer
subsystems, each responsible for a different class of services. For example, an onboard
system for a car could be decomposed into a travel service, giving real time directions to the
driver, an individual preferences service, remembering a driver’s seat position and favorite
radio station, and vehicle service, keeping track of the car’s gas consumption, repairs, and
scheduled maintenance. Each subsystem depends loosely on each other but could often
operate in isolation.

Subsystem decomposition DRAFT - DO NOT DISTRIBUTE

System Design 19 of 76

In general, a subsystem decomposition is the result of both partitioning and layering. We
first partition the system into top level subsystems which are responsible for specific
functionality or which run on a specific hardware node. Each of the resulting subsystems
are, if complexity justifies it, decomposed into lower and lower level layers until they are
simple enough to be implemented by a single developer. Each subsystem adds a certain
processing overhead due to its interface with other systems. Excessive partitioning or
layering can lead to increased complexity.

8.3.5. Software architecture

As the complexity of systems increases, the specification of the system decomposition is
critical. On the one hand, it is often used as a management tool for distributing work to
different teams and team reorganization is expensive. On the other hand, it is difficult to

FIGURE 117.An example of open architecture: the OSF/Motif library (UML class
diagram, packages collapsed). Xlib provides low level drawing facilities. Xt provides
basic user interface widget management. Motif provides a large number of sophisticated
widgets. The Application can access each of these layers independently.

Xlib

Xt

Motif

Application

Subsystem decomposition DRAFT-DO NOT DISTRIBUTE

20 of 76 System Design

modify or correct a weak decomposition once development has started as most subsystem
interfaces have to change. In recognition of the importance of this problem, the concept of
software architecture has emerged. A software architecture includes the system
decomposition, the global control flow, error handling policies and inter subsystem
communication protocols [Shaw & Garlan, 1996].

In this section, we describe a few sample architectures that can be used for different types of
systems. This is by no means a systematic or thorough exposition of the subject. Rather, we
aim to provide you with a few representative examples and refer you to the literature for
more details.

Repository architecture

In the repository architecture (see Figure 118), subsystems access and modify data from a
single data structure called the central repository. Subsystems are relatively independent
and interact only through the central data structure. Control flow can be dictated either by
the central repository (e.g., triggers on the data invoke peripheral systems) or by the
subsystems (e.g., independent flow of control and synchronization through locks in the
repository).

The repository architecture is typical for database management systems, such as a payroll
system or a bank system. The central location of the data makes it easier to deal with
concurrency and integrity issues between subsystems. Modern compilers and software
development environments also follow a repository architecture (see Figure 119). The

FIGURE 118.Repository architecture (UML class diagram). Every subsystem only
depends on a central datastructure called the repository. The repository in turn, has no
knowledge of the other subsystems.

Subsystem

Repository

createData()
setData()
getData()
searchData()

Subsystem decomposition DRAFT - DO NOT DISTRIBUTE

System Design 21 of 76

different subsystems of a compiler access and update a central parse tree and a symbol
table. Debuggers and syntactical editors access the symbol table as well.

The repository subsystem can also be used for implementing the global control flow. In the
compiler example of Figure 119, each individual tool (e.g., the compiler, the debugger, and
the editor) is invoked by the user. The repository only ensures that concurrent accesses are
serialized. Conversely, the repository can be used to invoke the subsystems based on the
state of the central datastructure. These systems are called blackboard systems. The
HEARSAY II Speech understanding system [Erman 1980], one of the first blackboard
system, selected tools to invoke based on the current state of the blackboard.

FIGURE 119.An instance of the repository architecture (UML Class diagram). A modern
compiler incrementally generates a parse tree and a symbol table that can be later used by
debuggers and syntactic editors.

LexicalAnalyzer

SyntacticAnalyzer
SemanticAnalyzer

CodeGenerator

SourceLevelDebugger SyntacticEditor

ParseTree SymbolTable

Compiler

Repository

Optimizer

Subsystem decomposition DRAFT-DO NOT DISTRIBUTE

22 of 76 System Design

Repository architectures are well suited for applications with constantly changing complex
data processing tasks. Once a central repository is well defined, we can easily add new
services in the form of additional subsystems. The main disadvantage of repository systems
is that the central repository can quickly become a bottleneck, both from a performance
aspect and a modifiability aspect.

Model/View/Controller

In the Model/View/Controller (MVC) architecture (see Figure), subsystems are classified
into three different kinds: model subsystems are responsible for maintaining domain
knowledge, view subsystems are responsible for displaying it to the user, and controller
subsystems are responsible for managing the sequence of interactions with the user. The
model subsystems are developed such that they do not depend on any view or controller
subsystem. Changes in their state is propagated to the view subsystem via a subscribe/
notify protocol. The MVC architecture is a special case of repository architecture where
Model implements the central datastructure and control objects dictate the control flow.

For example, Figure 120 and Figure 121 illustrate the sequence of events that occur in a
MVC architecture. Figure 120 displays two views of a file system. The bottom window lists
the content of the Comp-Based Software Engineering folder, including the file
9DesignPatterns2.ppt. The top window displays information about this file. The name of

Model/View/Controller architecture (UML class diagram). The Controller gathers
input from the user and sends messages to the Model. The Model maintains the central
datastructure. The View(s) display the Model and is notified (via a subscribe/notify
protocol) whenever the Model is changed.

Controller

Model

View
subscriber

notifier

initiator

repository

*

1

1

*

Subsystem decomposition DRAFT - DO NOT DISTRIBUTE

System Design 23 of 76

the file 9DesignPatterns2.ppt appears in three places: in both windows and in the title of
the top window.

FIGURE 120.Use of the MVC architecture in the Macintosh file system. The “model” is
the filename 9DesignPAtterns2.ppt. One “view” is a window titled The Comp-Based
Software Engineering which displays the content of a folder containing the file
9DesignPatterns2.ppt. The other “view” is window called 9DesignPatterns2.ppt
Info which displays information related to the file. If the file name is changed, both views
will immediately be updated by the “controller” (the Macintosh file system).

Subsystem decomposition DRAFT-DO NOT DISTRIBUTE

24 of 76 System Design

Assume now that we change the name of the file to 9DesignPatterns.ppt. Figure 121
shows the sequence of events:

1. The InfoView and the FolderView both subscribe for changes to the File models
they display (when they are created).

2. The user types the new name of the file.

3. The Controller, the object responsible for interacting with the user during file name
changes, sends a request to the Model.

4. The Model changes the file name and notifies all subscribers of the change.

5. Both InfoView and FolderView are updated, the user sees a consistent change.

The rationale between the separation of Model, View, and Controller is that user interfaces,
i.e., the View and the Controller, are much more often subject to change than domain
knowledge, i.e., the Model. Moreover, by removing any dependency from the Model on the
View with the subscription/notification protocol, changes in the views (user interface) do
not have any effect on the model subsystems. In the example of Figure 120, we could add a
unix-style shell view of the file system without having to modify the file system. We
described a similar decomposition in Chapter 7, Requirements Analysis when we identified
entity, interface, and control objects. This decomposition is also motivated by the same
considerations about change.

MVC architectures are well suited for interactive systems, especially when multiple views of
the same model are needed. MVC can be used for maintaining consistency across

FIGURE 121.Sequence of events in the Model/View/Control architecture (UML
collaboration diagram).

:Controller

:InfoView

:Model

2.User types new filename

1. Views subscribe to event

3. Request name change in model

4. Notify subscribers

5. Updated views

:FolderView

Subsystem decomposition DRAFT - DO NOT DISTRIBUTE

System Design 25 of 76

distributed data, however, it introduces the same performance bottleneck as for other
repository architectures.

Client/server architecture

In the client/server architecture (see Figure 122), a subsystem, the server, provides services
to instances of other subsystems called the clients, which are responsible for interacting
with the user. The request for a service is usually done via a remote procedure call
mechanism or with the help of middleware such as CORBA and Java RMI. Control flow in
the clients and the servers is independent except for synchronization to manage requests or
receiving results.

An information system with a central database is an example of a client/server architecture.
The clients are responsible for receiving inputs from the user, performing range checks, and
initiating a database transaction once all necessary data is collected. The server is then
responsible for performing the transaction and guaranteeing the integrity of the data. In this
case, a client/server architecture is a special case of the repository architecture where the
central datastructure is managed by a process. Client/server systems, however, are not

FIGURE 122.Client/server architecture (UML class diagram). Clients request services
from one or more servers. The server has no knowledge of the client. The client/server
architecture is a generalization of the repository architecture.

Client

Server

service1()
service2()

serviceN()
…

**

requester provider

Subsystem decomposition DRAFT-DO NOT DISTRIBUTE

26 of 76 System Design

restricted to a single server. In the world wide web, a single client can easily access data
from thousands of different servers.

Client/server architectures are well suited for distributed systems which manage large
amounts of data.

Peer-to-peer architecture

A peer-to-peer architecture (see Figure 124) is a generalization of the client/server
architecture in which subsystems can act both as client or as servers, in the sense that each
subsystem can request and provide services. The control flow within each subsystem is
independent from the others except for synchronizations on requests.

FIGURE 123.An instance of the client/server architecture (UML object diagram). Web
browsers (i.e., clients) can access any number of http servers

iexplorer:WebBrowser

lynx:WebBrowser

mosaic:WebBrowser

netscape:WebBrowser

www12.in.tum.de:WebServer

www.cs.cmu.edu:WebServer

Subsystem decomposition DRAFT - DO NOT DISTRIBUTE

System Design 27 of 76

An example of a peer-to-peer architecture is a database which, on the one hand, accepts
requests from the application and, on the other hand, sends notifications to the application
whenever certain data are changed. Peer-to-peer systems are much more difficult to design
than client/server systems. They introduce the possibility of deadlocks and complicate the
control flow.

Pipe and filter architecture

In the pipe and filter architecture (see Figure 126), subsystems process data received from a
set of inputs and send results to other subsystems via a set of outputs. The subsystems are
called filters and the associations between the subsystems are called pipes. Each filter only
knows the content and the format of the data received on the input pipes, not the filters that
produced them. Each filter is executed concurrently and synchronization is done via the

FIGURE 124.Peer-to-peer architecture (UML class diagram). Peers can request services
from and provide services to other peers.

FIGURE 125.An example of peer-to-peer architecture (UML collaboration diagram). The
database server can both process requests from and send notifications to applications.

Peer

service1()
service2()

serviceN()
…

requester

provider

*

*

application1:DBUser

database:DBMS

application2:DBUser

1. updateData

2. changeNotification

Subsystem decomposition DRAFT-DO NOT DISTRIBUTE

28 of 76 System Design

pipes. The pipe and filter architecture is modifiable: filters can be substituted for others or
reconfigured to achieve a different purpose.

The best known example of pipe and filter architecture is the Unix shell[]. Most filters are
written such that they read their input and write their results on standard pipes. This
enables a Unix user to combine them in many different ways. Figure 127 shows an example
made out of four filters. The output of ps (process status) is fed into grep (search for a
pattern) to get rid off all the processes that are not owned by a specific user. The output of
grep (i.e., the processes owned by the user) is then sorted lexicographically by sort and
then sent to more. more is a filter that displays its input to a terminal, one screen at a time.

Pipe and filter architectures are suited for systems that apply transformations to streams of
data without intervention by users. They are not suited for systems which require more
complex interactions between components, such as an information management system or
an interactive system.

FIGURE 126.Pipe and filter architecture (UML class diagram). A Filter can have many
inputs and outputs. A Pipe connects one of the outputs of a Filter to one of the inputs of
another Filter.

FIGURE 127.An instance of the pipe and filter architecture (unix command and UML
activity diagram).

Filter Pipe

input output

output input* 1

* 1

% ps auxwww | grep dutoit | sort | more

ps grep sort more

dutoit 19737 0.2 1.6 1908 1500 pts/6 O 15:24:36 0:00 -tcsh
dutoit 19858 0.2 0.7 816 580 pts/6 S 15:38:46 0:00 grep dutoit
dutoit 19859 0.2 0.6 812 540 pts/6 O 15:38:47 0:00 sort

From objects to subsystems DRAFT - DO NOT DISTRIBUTE

System Design 29 of 76

8.4. From objects to subsystems

System design consists of transforming the requirements analysis model into the design
model that takes into account the nonfunctional requirements and constraints described in
the problem statement and the requirements analysis document. In Section 8.3, we focused
on subsystem decompositions and their properties. In this section, we describe the activities
that are needed to ensure that a subsystem decomposition addresses all the nonfunctional
requirements and prepares for taking into accounts constraints during the implementation
phase. We illustrate these activities with an example, MyTrip, a route planning system for car
drivers, throughout this section. This will provide you with more concrete knowledge of
system design concepts.

We start with the requirements analysis model from MyTrip. We then

• identify design goals from the nonfunctional requirements (Section 8.4.2)

• design an initial subsystem decomposition (Section 8.4.3)

• map subsystems to processors and components (Section 8.4.4)

• decide storage (Section 8.4.5)

• access control policies (Section 8.4.6)

• select a control flow mechanism (Section 8.4.7), and

• identify boundary conditions (Section 8.4.8).

In Section 8.4.9, we examine issues related to stabilizing the system design while
anticipating change. Finally, in Section 8.4.10, we describe how the system design model is
reviewed.

But first, we describe the requirements analysis model we use as a starting point for the
system design of MyTrip.

From objects to subsystems DRAFT-DO NOT DISTRIBUTE

30 of 76 System Design

8.4.1. Starting point: requirements analysis model for a route planning system

Using MyTrip, a driver can plan a trip from a home computer by contacting a trip planning
service on the web (PlanTrip in Figure 128). The trip is saved for later retrieval on the
server. The trip planning service must support more than one driver.

The driver then goes to the car and starts the trip, while the onboard computer gives
directions based on trip information from the planning service and her current position
indicated by an onboard GPS system (ExecuteTrip in Figure 129).

Use case name PlanTrip

Entry condition 1. The Driver activates her home computer and logs into the trip
planning web service.

Flow of events 2. Upon successful login, the Driver enters constraints for a trip as a
sequence of destinations.

3. Based on a database of maps, the planning service computes the
shortest way visiting the destinations in the specified order. The result
is a sequence of segments binding a series of crossings and a list of
directions.

4. The Driver can revise the trip by adding or removing destinations.

Exit condition 5. The Driver saves the planned trip by name in the planning service
database for later retrieval.

FIGURE 128.PlanTrip use case of the MyTrip system.

Use case name ExecuteTrip

Entry condition 1. The Driver turns on her car and logs into the onboard route assistant.

Flow of events 2. Upon successful login, the Driver specifies the planning service and
the name of the trip to be executed.

3. The onboard route assistant obtains the list of destinations, directions,
segments, and crossings from the planning service.

FIGURE 129.ExecuteTrip use case of the MyTrip system.

From objects to subsystems DRAFT - DO NOT DISTRIBUTE

System Design 31 of 76

We perform the requirements analysis for the MyTrip system following the techniques
outlined in Chapter 7, Requirements Analysis and obtain the model in Figure 130.

4. Given the current position, the route assistant provides the driver with
the next set of directions.

Exit condition 5. The Driver arrives to destination and shuts down the route assistant.

Crossing A Crossing is a geographical point were a driver can choose between several
Segments.

Destination A Destination represents a location where the driver wishes to go.

Direction Given a Crossing and an adjacent Segment, a Direction describes in
natural language terms how to steer the car onto the given Segment.

Location A Location is the position of the car as known by the onboard GPS system or
the number of turns of the wheels.

PlanningService A PlanningService is a web server that can supply a trip linking a number
of destinations in the form of a sequence of crossings and segments.

FIGURE 130. Requirements analysis model for the MyTrip route planning and execution.

FIGURE 129.ExecuteTrip use case of the MyTrip system.

Trip

Location

PlanningService

Segment

Crossing

RouteAssistant

Direction

Destination

From objects to subsystems DRAFT-DO NOT DISTRIBUTE

32 of 76 System Design

In addition, during requirements elicitation, our client specified the following nonfunctional
requirements for MyTrip.

8.4.2. Identifying design goals

The definition of design goals is the first step of system design. It identifies the qualities that
our system should focus on. Many design goals can be inferred from the nonfunctional
requirements or from the application domain. Others will have to be elicited from the client.
It is, however, necessary to state them explicitly such that every important design decision
can be made consistently following the same set of criteria.

For example, in the light of the nonfunctional requirements for MyTrip described in
Section 8.4.1, we identify reliability and fault tolerance to connectivity loss as design goals.
We then identify security as a design goal as numerous drivers will have access to the same
trip planning server. We add modifiability as a design goal as we want to provide the ability

RouteAssistant A RouteAssistant gives Directions to the driver given the current
Location and upcoming Crossing.

Segment A Segment represents the road between two Crossings.

Trip A Trip is a sequence of Directions between two Destinations.

Nonfunctional requirements for MyTrip

1. MyTrip is in contact with the PlanningService via a wireless modem. It can be assumed that the
wireless modem functions properly at the initial destination.

2. Once the trip has been started, MyTrip should give correct directions even if modem fails to
maintain a connection with the PlanningService.

3. MyTrip should minimize connection time to reduce operation costs.

4. Replanning is possible only if the connection to the PlanningService is possible.

5. The PlanningService can support at least 50 different drivers, and 1000 trips

FIGURE 130. Requirements analysis model for the MyTrip route planning and execution.

From objects to subsystems DRAFT - DO NOT DISTRIBUTE

System Design 33 of 76

for drivers to select a trip planning service of their choice. The following box summarizes
the design goals we identified.

In general, we can select design goals from a long list of highly desirable qualities. Tables 33
through 37 list a number of possible design criteria. These criteria are organized into five
groups: performance, robustness, cost., maintenance, and end user criteria. Performance,
robustness, and end user criteria are usually specified in the requirements or inferred from
the application domain. Cost and maintenance criteria are dictated by the customer and the
supplier.

Performance criteria (Table 33) include the speed and space requirements imposed on the
system. Should the system be responsive or should it accomplish a maximum number of
tasks? Is memory space available for speed optimizations or should memory be used
sparingly?

Dependability criteria (Table 34) determine how much effort should be expended in
minimizing system crashes and their consequences. How often can the system crash? How
available to the user should the system be? Are there safety issues associated with system
crashes? Are there security risks associated with the system environment?

Design goals for MyTrip
• Reliability: MyTrip should be reliable. [generalization of nonfunctional requirement 2].
• Fault Tolerance: MyTrip should be fault tolerant to loss of connectivity with the routing service.

[rephrased nonfunctional requirement 2.]
• Security: MyTrip should be secure, i.e., not allow other drivers or nonauthorized users to access

another driver’s trips [deduced from application domain].
• Modifiability: MyTrip should be modifiable to use different routing services [anticipation of

change by developers].

Table 33 Performance criteria

Design criteria Definition

Response time How soon is a user request acknowledged after the request has been issued?

Throughput How many tasks can the system accomplish in a fixed period of time.

Memory How much space is required for the system to run?

Table 34 Dependability criteria

Design criteria Definition

Robustness Ability to survive invalid user input

Reliability Difference between specified and observed behavior.

From objects to subsystems DRAFT-DO NOT DISTRIBUTE

34 of 76 System Design

Cost criteria (Table 35) include the cost to develop the system, to deploy it, and to
administer it. Note that cost criteria not only include design considerations but managerial
ones as well. When the system is replacing an older one, the cost of ensuring backward
compatibility or transitioning to the new system has to be taken into account. There are also
trade-offs between different types of costs such as development cost, end user training cost,
transition costs and maintenance costs. Maintaining backward compatibility with a
previous system can add to the development cost while reducing the transition cost.

Maintenance criteria (Table 36) determine how difficult it is to change the system after
deployment. How easily can new functionality be added? How easily can existing functions
be revised? Can the system be adapted to a different application domain? How much effort
will be required to port the system to a different platform? These criteria are harder to
optimize and plan for as it is seldom clear how long the system will be operational and how
successful the project will be.

End user criteria (Table 37) include qualities that are desirable from a users’ point of view
that have not yet been covered under the performance and dependability criteria. These
include usability (how difficult is the software to use and to learn?) and utility (how well

Availability Percentage of time system can be used to accomplish normal tasks.

Fault tolerance Ability to operate under erroneous conditions.

Security Ability to stand malicious attacks

Safety Ability to not endanger human lives, even in the presence of errors and failures.

Table 35 Cost criteria

Design criteria Definition

Development cost Money is required to develop the system.

Deployment cost Money is required to install the system and train the users.

Development cost Cost for developing the initial system

Backward
compatibility

Ability to handle data from previous revisions or from different systems.

Training cost Training the end user in the use of the new system

Maintenance cost Cost required for bug fixes and enhancements to the system

Administration
cost

Money required to administer the system.

Table 34 Dependability criteria

Design criteria Definition

From objects to subsystems DRAFT - DO NOT DISTRIBUTE

System Design 35 of 76

does the system the user’s work?). Often these criteria do not receive much attention
especially when the client contracting the system is distinct from the users of the system.

When defining design goals, only a small subset of these criteria can be simultaneously
taken into account. It is, for example, unrealistic to develop software that is safe, secure, and
cheap. Typically, developers need to prioritize design goals and trade them off against each
other as well as against managerial goals as the project runs behind schedule or over
budget. Table 38 lists several possible trade-offs.

Table 36 Maintenance criteria

Design criteria Definition

Extensibility How easy is it to add the functionality or new classes of the system?

Modifiability How easy is it to change the functionality of the system?

Adaptability How easy is it to port the system to different application domains?

Portability How easy is it to port the system to different platforms?

Readability How easy is it to understand the system from reading the code?

Traceability of requirements How easy is it to map the code to specific requirements?

Table 37 End user criteria

Design criteria Definition

Utility How well does the system support the work of the user?

Usability How easy is it for the user to use the system?

Table 38 Examples of design goal trade-offs

Trade-off Rationale

Space vs. speed If the software does not meet response time or throughput
requirements, more memory can be expended to speed up the software
(e.g., caching, more redundancy, etc.). If the software does not meet
memory space constraints, data can be compressed at the cost of speed.

Delivery time vs. functionality If the development runs behind schedule, a project manager can deliver
less functionality than specified and deliver on time, or deliver the full
functionality at a later time. Contract software usually puts more
emphasis on functionality while off-the-shelf software projects put
more emphasis on delivery date.

From objects to subsystems DRAFT-DO NOT DISTRIBUTE

36 of 76 System Design

Managerial goals can be traded off against technical goals (e.g., delivery time vs.
functionality). Once we have a clear idea of the design goals, we can proceed to design an
initial subsystem decomposition.

8.4.3. Identifying subsystems

Finding subsystems during system design has many similarities to finding objects during
requirements analysis: it is a volatile activity driven by heuristics. As a result, the object
identification techniques we described in Chapter 7, Requirements Analysis, such as Abbots
lexical rules, are applicable to subsystem identification. Moreover, subsystem
decomposition is constantly revised whenever new issues are addressed: subsystems are
merged into one subsystem, a complex subsystem is split into parts, some subsystems are
added to take care of new functionality. The first iterations over the subsystem
decomposition can introduce drastic changes in the system design model. These are often
best handled through brainstorming.

The initial subsystem decomposition should be derived from the functional requirements.
For example, in the MyTrip system, we identify two major groups of objects: those that are
involved during the PlanTrip use cases, and those that are involved during the
ExecuteTrip use case. The Trip, Direction, Crossing, Segment, and Destination
classes are shared between both use cases. This set of classes is tightly coupled as they are
used as a whole to represent a Trip. We decide to assign them with PlanningService to
the PlanningSubsystem, while the remainder of the classes are assigned to the
RoutingSubsystem. This leads to only one association crossing subsystem boundaries.

Delivery time vs. quality If the testing runs behind schedule, a project manager can deliver the
software on time with known bugs (and possible providing a later
patch to fix any serious bugs) or to deliver the software later with more
bugs fixed.

Delivery time vs. staffing If development runs behind schedule, a project manager can add
resources to the project in order to increase productivity. In most cases,
this option is only available early in the project: adding resources
usually decreases productivity while new personnel is being trained
brought up to date. Note that adding resources will also raise the cost of
development.

Table 38 Examples of design goal trade-offs

Trade-off Rationale

From objects to subsystems DRAFT - DO NOT DISTRIBUTE

System Design 37 of 76

Note that this subsystem decomposition follows a repository architecture in which the
PlanningSubsystem is responsible for the central datastructure.

Another heuristic for subsystem identification is to keep functionally related objects
together. A starting point is to take the use cases and assign the participating objects that
have been identified in each of them to the subsystems. Some group of objects, as the Trip
group in MyTrip, are shared and used for communicating information from one subsystem to
another. We can either create a new subsystem to accommodate them or assign them to the
subsystem that creates these objects.

PlanningSubsystem The PlanningSubsystem is responsible for constructing a Trip
connecting a sequence of Destinations. The
PlanningSubsystem is also responsible for responding to replan
requests from RoutingSubsystems.

RoutingSubsystem The RoutingSubsystem is responsible for downloading a Trip
from the PlanningService and executing it by giving
Directions to the driver based on its Location.

FIGURE 131. Initial subsystem decomposition for MyTrip (UML class diagram).

Heuristics for grouping objects into subsystems
• Assign objects identified in one use case into the same subsystem.
• Create a dedicated subsystem for objects used for moving data among subsystems.
• Minimize the number of associations crossing subsystem boundaries.
• All objects in the same subsystem should be functionally related.

Trip

Location

PlanningService

Segment

Crossing

RouteAssistant

Direction

Destination

RoutingSubsystem PlanningSubsystem

From objects to subsystems DRAFT-DO NOT DISTRIBUTE

38 of 76 System Design

Encapsulating subsystems

Subsystem decomposition reduces the complexity of the solution domain by minimizing
dependencies among classes. The Facade pattern [Gamma et al., 1994] allows us to further
reduce dependencies between classes by encapsulating a subsystem with a simple, unified
interface. For example, in Figure 132, the Compiler class is a Facade hiding the classes
CodeGenerator, Optimizer, ParseNode, Parser, and Lexer. The Facade provides access
only to the public services offered by the subsystem and hides all other details, effectively
reducing coupling between subsystems.

Subsystems identified during the initial subsystem decomposition often result from
grouping several functionally related classes. These subsystems are good candidates for the
Facade patterns and should be encapsulated under one class.

FIGURE 132.An example of Facade pattern (UML class diagram).

Compiler

compile(s)

ParseNode

create()

Lexer

getToken()

CodeGenerator

create()

Parser

generateParseTree()

Optimizer

create()

Compiler

From objects to subsystems DRAFT - DO NOT DISTRIBUTE

System Design 39 of 76

8.4.4. Mapping subsystems to processors and components

Selecting a hardware configuration and a platform

Many systems run on more than one computer and depend, to various extent, on access to
an intranet or to the internet. The use of multiple computers can address high performance
needs or to interconnect multiple distributed users. Consequently, we need to examine
carefully the allocation of subsystems to computers and the design of the infrastructure for
supporting communication between subsystems. These computers are modeled as nodes in
UML deployment diagrams described in Chapter 2, Modeling with UML. Nodes can either
represent a specific instances (e.g., myMac) or a class of computers (e.g., WebServer).1 Since
the hardware mapping activity has significant impact on the performance and complexity of
the system, we perform it early in system design.

Select a hardware configuration also include selecting a virtual machine onto which the
system should be built. The virtual machine includes the operating system and any software
component that are needed, such as a database management system or a communication
package. The selection of a virtual machine reduces the distance between the system and the
hardware platform on which it will run. The more functionality the components provide,
the less work involved. The selection of the virtual machine, however, may be constrained
by the client who often acquired hardware before the start of the project. The selection of a
virtual machine may also be constrained by cost considerations: in some cases, it is difficult
to estimate whether building a component costs more than buying it.

In MyTrip, we deduce from the requirements that PlanningSubsystem and
RoutingSubsystem run on two different nodes: the former is a web-based service on an
Internet host while the second runs on the onboard computer. Figure 133 illustrates the
hardware allocation for MyTrip with two nodes called:OnboardComputer and:WebServer.

1. These two cases are distinguished with the usual UML naming convention: underlined names for instances
and non underlined names for classes

From objects to subsystems DRAFT-DO NOT DISTRIBUTE

40 of 76 System Design

We select a Unix machine as the virtual machine for the :WebServer and the web browsers
Netscape and Internet Explorer as the virtual machines for the :OnBoardComputer.

Allocating objects and subsystems to nodes

Once the hardware configuration has been defined and the virtual machines selected,
objects and subsystems are assigned to nodes. This often triggers the identification of new
objects and subsystems for transporting data among the nodes.

In the MyTrip system, both RoutingSubsystem and PlanningSubsystem share the objects
Trip, Destination, Crossing, Segment, and Direction. Instances of these classes need to
communicate via a wireless modem using some communication protocol. We create a new
subsystem to support this communication: CommunicationSubsystem, a subsystem located
on both nodes for managing the communication between the two.

We also notice, that only segments constituting the planned trip are stored in
RoutingSubsystem. Adjacent segments not part of the trip are stored only in the
PlanningSubsystem. To take this into account, we need objects in the RoutingSubsystem
that can act as a surrogates to Segments and Trips in the PlanningSubsystem. An object
that acts on the behalf of another one is called a proxy. We therefore create two new classes
called SegmentProxy and TripProxy and make them part of the RoutingSubsystem.
These proxies are examples of the Proxy design pattern [Gamma et al., 1994].

In case of replanning by the driver, this class will transparently request the
CommunicationSubsystem to retrieve the information associated with its corresponding

FIGURE 133.Allocation of MyTrip subsystems to hardware (UML deployment diagram).
RoutingSubsystem runs on the OnboardComputer while PlanningSubsystem runs on a
WebServer.

RoutingSubsystem PlanningSubsystem

:OnboardComputer :WebServer

From objects to subsystems DRAFT - DO NOT DISTRIBUTE

System Design 41 of 76

Segments on the PlanningSubsystem. Finally, the CommunicationSubsystem is used for
transferring a complete trip from PlanningSubsystem to RouteAssistant. The revised
design model and the additional class descriptions are depicted in Figure 134.

CommunicationSubsystem The CommunicationSubsystem is responsible for transporting
objects from the PlanningSubsystem to the
RoutingSubsystem.

Connection A Connection represents an active link between the
PlanningSubsystem and the RoutingSubsystem. A
Connection object handles exceptional cases associated with loss
of network services.

Message A Message represents a Trip and its related Destinations,
Segments, Crossings, and Directions, encoded for transport.

FIGURE 134. Revised design model for MyTrip (UML Class diagram, associations omitted
for clarity).

TripLocation

PlanningService

Segment
Crossing

RouteAssistant

Direction

Destination

TripProxy

SegmentProxy

Message

Connection

PlanningSubsystem

CommunicationSubsystem

RoutingSubsystem

From objects to subsystems DRAFT-DO NOT DISTRIBUTE

42 of 76 System Design

In general, allocating subsystems to hardware nodes enables us to distribute functionality
and processing power where it is most needed. Unfortunately, it also introduces issues
related to storing, transferring, replicating, and synchronizing data among subsystems. For
this reason, developers also select the components they will use for developing the system.

Encapsulating components

As the complexity of systems increases and the time to market shortens, developers have
strong incentives to reuse code and to rely on vendor supplied components. Interactive
systems, for example, are now rarely built from scratch, but rather, are developed with user
interface toolkits that provide a wide range of dialogs, windows, buttons, or other standard
interface objects. Other projects focus on redoing only part of an existing system. For
example, corporate information systems, costly to design and build, need to be updated to
new client hardware. Often, only the client side of the system is upgraded to new
technology and the backend of the system left untouched.1 Whether dealing with off-the-
shelf component or legacy code, developers have to deal with existing code which they
cannot modify and which has not been designed to be integrated into their system.

We can deal with existing components such as code by encapsulating them. This approach
has the advantage of decoupling the system from the encapsulated code, thus minimizing

1. Such projects are called interface engineering projects (see Chapter 3, Software Life Cycle)

FIGURE 135.Adapter pattern (UML class diagram). The adapter pattern is used to
provide a different interface (New Interface) to an existing component (Legacy
System).

Calling
New Interface

Request()

Legacy System

ExistingRequest()

Adaptor

Request()

adaptee

Subsystem

From objects to subsystems DRAFT - DO NOT DISTRIBUTE

System Design 43 of 76

the impact of existing software on the design. When the encapsulated code is written in the
same language as the new system, this can be done using an Adapter pattern.

// Existing target interface
interface Comparator {

int compare(Object o1, Object o2);
//…

}

// Existing client
class Array {

static void sort(Object [] a, Comparator c);
//…

}

// Existing adaptee class
class MyString extends String {

boolean equals(Object o);
boolean greaterThan(MyString s);
//…

}

// New adaptor class
class MyStringComparator implements Comparator {

//…
int compare(Object o1, Object o2) {

int result;
if (o1.greaterThan(o2)) {

result = 1
} else if (o1.equals(o2)) {

result = 0;
} else {

result = -1;
}
return result;

}
}

FIGURE 136.Adapter pattern example (Java). The static sort() method on Arrays takes
two arguments: an arrays of Objects to be sorted and a Comparator defining the relative
order of the elements. To sort an array of MyStrings, we need to define a comparator
called MyStringComparator with the proper interface. MyStringComparator is an
Adaptor.

From objects to subsystems DRAFT-DO NOT DISTRIBUTE

44 of 76 System Design

The Adapter pattern (see Figure 135) is used to convert the interface of an existing piece of
code into an interface, called the New Interface, that a calling subsystem expects. An
Adaptor class, also called a wrapper, is introduced to provide the glue between
New Interface and Legacy System. For example, assume the client is the static sort()
method of the Java Array class (see Figure 136). This method expects two arguments a, an
Array of objects, and c, a Comparator object, which provides a compare() method defining
the relative order between elements. Assume we are interested in sorting strings of the class
MyString, which defines the greaterThan() and an equals() methods. To sort an Array
of MyStrings, we need to define a new comparator, MyStringComparator, which provides
a compare() method using greaterThan() and equals(). MyStringComparator is an
Adaptor class. 1

When encapsulating legacy code that is written in a different language than the system
under development, we need to deal with language differences. Although integrating code
from two different compiled languages can be done, it can present major problems,
especially when one or both of the languages are object-oriented and implement different
message dispatching semantics. This motivated standards such as CORBA which defines
protocols for allowing the interoperabilty of distributed objects written in different
languages. In the case of client/server architectures, other solutions include developing
wrappers around communication protocols between processes.

Protocols for interprocess communication (e.g., pipes and sockets) are usually provided by
the operating system, and thus, are language independent. In the cases of CORBA and
interprocess communication, the cost of invoking a service becomes much higher than the
cost of sending messages among objects in the same process. You need to carefully evaluate
the impact on performance by wrappers around legacy code when response time and other
performance design goals have been selected.

Technology decisions become obsolete quickly. The system you are building is likely to
survive many platforms and will be ported and upgrade several times during maintenance.
These tasks, when performed during maintenance, are usually costly because a large
amount of the design information is lost. Why was the original hardware configuration
used? Which features of the database management system does this system rely on?
Developers can preserve this information by documenting the design rationale of their
system, including hardware and component decisions. We describe techniques for doing
this in Chapter 9, Design Rationale.

1. When designing a new system, adapters are seldom necessary as the interface of new classes can be defined
such that they comply with the necessary interfaces

From objects to subsystems DRAFT - DO NOT DISTRIBUTE

System Design 45 of 76

8.4.5. Defining persistent data stores

Persistent data outlive a single execution of the system. For example, an author may save his
work into a file when using a word processor. The file can then be re-opened several days or
weeks later. The word processor need not to run for the file to exist. Similarly, information
related to employees, their employment status, and their paychecks live in a database
management system. This allows all the programs that operate on employee data to do so
consistently. Moreover, storing data in a database enables the system to perform complex
queries on a large data set (e.g., the records of several thousands of employees).

Where and how data is stored in the system impacts the system decomposition. In some
cases, for example in a repository architecture (see Section 8.3.5), a subsystem can be
completely dedicated to the storage of data. The selection of a specific database
management system can also have implications on the overall control strategy and
concurrency management.

For example, in MyTrip, we decide to store the current Trip in a file on a small removable
disk in order to allow the recovery of the Trip in case the driver shuts off the car before
reaching the final Destination. Using a file is the simplest and most efficient solution in
this case, given that the RoutingSubsystem will only store complete trips to the file before
shutdown and load the file at start-up. In the PlanningSubsystem, however, the trips will
be stored in a database. This subsystem can then be used to manage all Trips for many
drivers as well as the maps needed to generate the trips. Using a database for this subsystem
allows us to perform complex queries on these data. We add the TripFileStoreSubsystem
and the MapDBStoreSubsystem subsystems to MyTrip to reflect these decisions, as illustrated
in Figure 137.

From objects to subsystems DRAFT-DO NOT DISTRIBUTE

46 of 76 System Design

In general, we first need to identify which objects need to be persistent. The persistency of
objects is directly inferred from the application domain. In MyTrip, only Trips and their
related classes need to be stored. The location of the car, for example, need not be persistent
since it needs to be recalculated constantly. Then, we need to decide how these objects
should be stored (e.g., file, relational database, or object database). The decision for the
storage management is more complex and is usually dictated by nonfunctional
requirements: should the objects be retrieved quickly? Is there a need for complex queries?
Do objects take a lot of space (e.g., are there images to store)? Database management
systems provide mechanisms for concurrency control and efficient queries over large
datasets.

TripFileStoreSubsystem The TripFileStoreSubsystem is responsible for storing trips
in files on the onboard computer. Since this functionality is only
used for storing trips when the car shuts down, this subsystems
only supports the fast storage and loading of whole trips.

MapDBStoreSubsystem The MapDBStoreSubsystem is responsible for storing maps and
trips in a database for the PlanningSubsystem. This subsystem
supports multiple concurrent drivers and planning agents.

FIGURE 137. Subsystem decomposition of MyTrip after deciding on the issue of data stores
(UML class diagram, packages collapsed for clarity).

RoutingSubsystem PlanningSubsystem

CommunicationSubsystem

TripFileStoreSubsystem
MapDBStoreSubsystem

From objects to subsystems DRAFT - DO NOT DISTRIBUTE

System Design 47 of 76

There are currently three realistic options for storage management:

• Flat files. Files are the storage abstractions provided by operating systems. The
application stores its data as a sequence of bytes and defines how and when data
should be retrieved. The file abstraction is relatively low level and enables the
application to perform a variety of size and speed optimizations. Files, however,
require the application to take care of many issues, such as concurrent accesses, and
loss of data in case of crash.

• Relational database. A relational database provides an abstraction of data that is
higher than flat files. Data are stored in tables which comply with a predefined type
called schema. Each column in the table represents an attribute. Each row represents
a data item as a tuple of attribute values. Several tuples in different tables are used to
represent the attributes of an individual object. Relational databases have been used
for a while and are a mature technology. The use of a relational database introduces a
high cost and, often, a performance bottleneck.

• Object-oriented database. An object-oriented database provides services similar to a
relational database. Unlike a relational database, it stores data as objects and
associations. In addition to providing a higher level of abstraction (and thus reducing
the need to translate between objects and storage entities), object-oriented databases
provide developers with inheritance and abstract datatypes. Object-oriented
databases are usually slower than relational databases for typical queries.

The following box summarizes the trade-offs when selecting storage management system.

Trade-off between files and databases
When should you choose a file?
• Voluminous data (e.g., images)
• Temporary data (e.g., core file)
• Low information density (e.g., archival files, history logs)
When should you choose a data base?
• Concurrent accesses
• Access at fine levels of details
• Multiple platforms
• Multiple applications over the same data
When should you choose a relational database?
• Complex queries over attributes.
• Large dataset.
When should you choose an object-oriented database?
• Extensive use of associations to retrieve data.
• Medium size data set.
• Irregular associations among objects.

From objects to subsystems DRAFT-DO NOT DISTRIBUTE

48 of 76 System Design

Encapsulating data stores

Once we select a storage mechanism (say, a relational database), we can encapsulate it into a
subsystem and define a high-level interface that is vendor independent. For example, the
Bridge pattern (see Figure 138 and [Gamma et al., 1994]) allows the interface and the
implementation of a class to be decoupled. This allows the substitution of different
implementations of a given class, sometimes even at run-time. The Abstraction class
defines the interface visible to the client. The Implementor is an abstract class which defines
the lower level methods available to Abstraction. An Abstraction instance maintains a
reference to its corresponding Implementor instance. Abstraction and Implementor can
be refined independently.

Database connectivity standards such as ODBC [Microsoft, 1995] and JDBC [JDBC, 1998]
provide such abstractions for relational databases (see ODBC Bridge pattern in Figure 139).
Note, however, that even if most relational databases provide similar services, providing

FIGURE 138.Bridge pattern (UML class diagram).

Subsystem

RefinedAbstraction
ConcreteConcrete

Implementor

imp

ImplementorA ImplementorB

provides

Abstraction

From objects to subsystems DRAFT - DO NOT DISTRIBUTE

System Design 49 of 76

such an abstraction reduces performance. The design goals we defined at the beginning of
the system design phase help us trade-off performance vs. modifiability.

8.4.6. Defining access control

In multi user systems, different actors have access to different functionality and data. For
example, an everyday actor may only access the data it creates while a system administrator
actor may have unlimited access to system data and to other users’ data. During
requirements analysis, we modeled these distinctions by associating different use cases to
different actors. During system design, we model access by examining the object model, by
determining which objects are shared among actors, and by defining how actors can control
access. Depending on the security requirements on the system, we also define how actors
are authenticated to the system (i.e., how actors prove to the system who they are) and how
selected data in the system should be encrypted.

FIGURE 139.Bridge pattern for abstracting database vendors (UML class diagram).
Removing the dependency from database vendors from the systems enables more
flexibility in configuring the system. Some clients already have a site license with a
database vendor. Other clients might be interested in cutting price and using a free
database management system.

CommunicationSubsystem The CommunicationSubsystem is responsible for transporting
Trips from the PlanningSubsystem to the
RoutingSubsystem. The CommunicationSubsystem uses the
Driver associated with the Trip being transported for selecting a key
and encrypting the communication traffic.

FIGURE 140. Revisions to the design model stemming from the decision to authenticate
Drivers and encrypt communication traffic (revisions indicated in italics).

Oracle ODBC

ODBC ImplementationODBC
imp

Driver
DB2 ODBC
Driver

Informix ODBC
Driver

From objects to subsystems DRAFT-DO NOT DISTRIBUTE

50 of 76 System Design

For example, in MyTrip, storing maps and Trips for many drivers in the same database
introduces security issues. We must ensure that Trips are sent only to the driver that
created them. This is also consistent with the security design goal we defined in Section 8.4.2
for MyTrip. Consequently, we model a driver with the Driver class and associate it with the
Trip class. The PlanningSubsystem becomes also responsible for authenticating Drivers
before sending Trips. Finally, we decide to encrypt the communication traffic between the
RoutingSubsystem and the PlanningSubsystem. This will be done by the
CommunicationSubsystem. The descriptions for the Driver class and the revised
descriptions for the PlanningSubsystem and the CommunicationSubsystem are displayed
in Figure 140.

Defining access control for a multi user system is usually more complex than in MyTrip. In
general, we need to define for each actor which operations they can access on each shared
object. For example, in a bank information system, a teller may credit or debit money from
local accounts up to a pre-defined amount. If the transaction exceeds the pre-defined
amount, a manager needs to approve the transaction. Moreover, managers and tellers can
only access accounts in their own branch, that is, they cannot access accounts in other
branches. Analysts on the other hand, can access information across all branches of the
corporation, but cannot post transactions on individual accounts.

We model access on classes with an access matrix. The rows of the matrix represents the
actors of the system. The columns represent classes whose access we control. An entry
(class, actor) in the access matrix is called an access right and lists the operations (e.g.,
postSmallDebit(), postLargeDebit(), examineBalance(), getCustomerAddress())

PlanningSubsystem The PlanningSubsystem is responsible for constructing a Trip
connecting a sequence of Destinations. The
PlanningSubsystem is also responsible for responding to replan
requests from RoutingSubsystems. Prior to processing any
requests, the PlanningSubsystem authenticates the Driver from
the RoutingSubsystem. The authenticated Driver is used to
determine which Trips can be sent to the corresponding
RoutingSubsystem.

Driver A Driver represents an authenticated user. It is used by the
CommunicationSubsystem to remember keys associated with a user
and by the PlanningSubsystem to associate Trips with users.

FIGURE 140. Revisions to the design model stemming from the decision to authenticate
Drivers and encrypt communication traffic (revisions indicated in italics).

From objects to subsystems DRAFT - DO NOT DISTRIBUTE

System Design 51 of 76

that can be executed on instances of the class by the actor. Figure 141 is an example of
access matrix for our bank information system.

We can represent the access matrix using one of three different approaches, global access
table, access control list and capabilities:

• A global access table represents explicitly every cell in the matrix as a (actor,
class, operation) tuple. Determining if an actor has access to a specific object
requires looking up the corresponding tuple. If no such tuple is found, access is
denied.

• An access control list associates a list of (actor, operation) pairs with each class
to be accessed. Empty cells are discarded. Every time an object is accessed, its access
list is checked for the corresponding actor and operation. An example of an access
control list is the guest list for a party. A butler checks the arriving guests by
comparing their names against names on the guest list. If there is a match, the guests
can enter, otherwise they are turned back.

• A capability associates a (class, operation) pair with an actor. A capability
provides an actor to gain control access to an object of the class described in the
capability. Denying a capability is equivalent to denying access. An example of a
capability is an invitation card for a party. In this case, the butler checks if the arriving

Objects
Actors

Corporation LocalBranch Account

Teller lookupLocalAccount() postSmallDebit()
postSmallCredit()
lookupBalance()

Manager lookupLocalAccount() postSmallDebit()
postSmallCredit()
postLargeDebit()
postLargeCredit()
examineBalance()
examineHistory()

Analyst examineGlobalDebits()
examineGlobalCredits()

examineLocalDebits()
examineLocalCredits()

FIGURE 141.Access matrix for a banking system. Tellers can only lookup local accounts,
perform small transactions on accounts, and inquire balances. Managers can perform
larger transactions and access account history in addition to the operations accessible to the
tellers. Analysts can access statistics for all branches but not perform operations at the
account level.

From objects to subsystems DRAFT-DO NOT DISTRIBUTE

52 of 76 System Design

guests hold an invitation for the party. If the invitation is valid, the guests are
admitted, otherwise, they are turned back. No other checks are necessary.

The representation of the access matrix is also a performance issue. Global access tables are
rarely used as they require a lot of space. Access control lists make it faster to answer the
question “Who has access to this object?”, while capability lists make it faster to answer the
question “Which objects has this actor access to?”.

Each row in the access matrix represents a different access view of the classes listed in the
columns. All of these access views should be consistent. Usually, however, access views are
implemented by defining a subclass for each different type of actor, operation tuple. For
example, in our banking system, we would implement an AccountViewedByTeller and
AccountViewedByManager class as subclasses of Account. Only the appropriate classes are
available to the corresponding actor. For example, the Analyst client software would not
include an Account class since the Analyst has no access to any operation in this class. This
reduces the risk that an error in the system results in the possibility of unauthorized access.

An access matrix only represents static access control. This means, that access rights can be
modeled as attributes of the objects of the system. In the bank information system example,
consider a broker actor who is assigned dynamically a set of portfolios. By policy, a broker
cannot access portfolios managed by another broker. In this case, we need to model access
rights dynamically in the system, and hence, this type of access is called dynamic access
control. For example, Figure 142 shows how this access can be implemented with a
protection proxy pattern [Gamma et al., 1994]. For each Portfolio, we create a
PortfolioProxy to protect the Portfolio and check for access. An Access association
between a legitimate Broker and a PortfolioProxy indicates which Portfolio the
Broker has access to. To access a Portfolio, the Broker sends a message to the
corresponding PortfolioProxy. The PortfolioProxy first checks if the invoking Broker

From objects to subsystems DRAFT - DO NOT DISTRIBUTE

System Design 53 of 76

has the appropriate association with the PortfolioProxy. If access is granted, the
PortfolioProxy delegates the message to the Portfolio. Otherwise, the operation fails.

In both types of access control, we assume that we know the actor, either the user behind the
keyboard or the calling subsystem. This process of verifying the association between the
identity of the user or subsystem and the system is called authentication. A widespread
authentication mechanism, for example, is for the user to specify a user name, known by
everybody, and a corresponding password, only known to the system and stored in an
access control list. The system protects its users password by encrypting them before storing
or transmitting them. If only a single user knows this user name/ password combination,
that we can assume that the user behind the keyboard is legitimate. Although password
authentication can be made secure with current technology, it suffers from many usability
disadvantages: users choose passwords that are easy to remember, and thus, easy to guess.
They also tend to write their password on notes which they keep close to their monitor, and
thus, visible to many other, unauthorized, users. Fortunately, other, more secure,
authentication mechanisms are available. For example, a smart card can be used in
conjunction with a password: an intruder would need both the smart card and the password
to gain access to the system. Better, we can use a biometric sensor for analyzing patterns of

FIGURE 142.Dynamic access implemented with a protection proxy. The Access
association class contains a set of operations that Broker can use to access a Portfolio.
Every operation in the PortfolioProxy first checks with the isAccessible() operation
if the invoking Broker has legitimate access. Once access has been granted,
PortfolioProxy delegates the operation to the actual Portfolio object. One Access
association can be used to control access to many Portfolios.

Broker

Portfolio

Access

buy()
sell()
estimateYield()

isAccessible(op)

1

1

PortfolioProxy

buy()
sell()
estimateYield()

* 1

From objects to subsystems DRAFT-DO NOT DISTRIBUTE

54 of 76 System Design

blood vessels in a person’s fingers or eyes. An intruder would then need the physical
presence of the legitimate user to gain access to the system, which is much more difficult
than just stealing a smart card.

In an environment where resources are shared among multiple users, authentication is
usually not sufficient. In the case of a network, for example, it is relatively easy for an
intruder to find tools to snoop the network traffic, including packets generated by other
users (see Figure 143). Worse, protocols such as TCP/IP were not designed with security in
mind: an intruder can forge packets such that they appear as if they were coming from
legitimate users.

Encryption is used to prevent such unauthorized accesses. Using an encryption algorithm,
we can translate a message, called plaintext, into a encrypted message, called a cyphertext,
such that even if an intruder intercepts the message, it cannot be understood. Only the
receiver has sufficient knowledge to correctly decrypt the message, that is, for reversing the
original process. The encryption process is parameterized by a key, such that the method of
encryption and decryption can be switched quickly in case the intruder manages to obtain
sufficient knowledge to decrypt the message.

Secure authentication and encryption are fundamentally difficult problems. You should
always select one or more off-the-shelf algorithms or package instead of designing your

FIGURE 143.Passive attack. Given current technology, it is relatively easy for a passive
intruder to listen to all network traffic. To prevent this kind of attack, encryption makes
the information an intruder sees difficult to understand.

Legitimate

Intruder

ServerUser

CC# 1234 5678 9012 3456 EXP 8/99

XZ<ASL@#34HF*(*A2135SDA*}BKDAWR#%_AS2255

Plaintext message

Encrypted message

From objects to subsystems DRAFT - DO NOT DISTRIBUTE

System Design 55 of 76

own (unless you are in the business of building such packages). Many such packages are
based on public standards that are widely reviewed by the academia and the industry, thus
ensuring a relatively high level of reliability and security.

Encapsulating access control

The use of vendor supplied software introduces a security problem: how can we be sure that
the supplied software does not include a trap door? Moreover, once a vulnerability is found
in a widely used package, how do we protect the system until a patch is available? We can
use redundancy to address both issues. For example, the Java Cryptographic Architecture
[JCA, 1998] allows multiple implementations of the same algorithms to coexist in the same
system, thus reducing the dependency on a specific vendor. More generally, we can use the
Strategy pattern [Gamma et al., 1994] to encapsulate multiple implementation of the same
algorithm. In this pattern (see Figure 144), the Strategy abstract class defines the generic
interface all implementations of the encapsulated algorithm should have.
ConcreteStrategy classes provide implementations of the algorithm by subclassing
Strategy. A Context class is responsible for managing the data structure on which
ConcreteStrategies operate. Context and a ConcreteStrategy class cooperate to
provided the needed functionality.

FIGURE 144.An example of Strategy pattern encapsulating multiple implementation of
the IDEA encryption algorithm (UML class diagram). The Message and IDEA classes
cooperate to realize the encryption of plain text. The selection of an implementation can be
done dynamically.

Message

getBlock()

IDEA

encrypt(key, block)

IDEA_Vendor_A IDEA_Vendor_B

decrypt(key, block)

Context class

Strategy class

ConcreteStrategy
classes

From objects to subsystems DRAFT-DO NOT DISTRIBUTE

56 of 76 System Design

Once authentication and encryption are provided, application specific access control can be
more easily implemented on top of these building blocks. In all cases, addressing security
issues is a difficult topic. When addressing these issues, developers should record their
assumptions and describe the intruder scenarios they are considering. When several
alternatives are explored, developers should state the design problems they are attempting
to solve and record the results of the evaluation. We describe in the next chapter how to do
this systematically using issue modeling.

8.4.7. Designing the global control flow

Control flow is the sequencing of actions in a system. In object-oriented systems, sequencing
actions includes deciding which operations should be executed and in which order. These
decisions are based on external events generated by an actor or on the passage of time.

Control flow is a typical design problem. During requirements analysis control flow is not
an issue, because we simply assume that all objects are running simultaneously, executing
operations any time they need to execute them. During system design we need to take into
account that not every object has the luxury of running on its on processor.

There are three possible control flow mechanisms:

• Procedure-driven control. Operations wait for input whenever they need data from
an actor. This kind of control flow is mostly used in legacy systems and systems
written in procedural languages. It introduces difficulties when used with object-
oriented languages. As the sequencing of operations is distributed among a large set
of objects, it becomes increasingly difficult to determine the order of inputs by
looking at the code.

Stream in, out;
String

// … initialization omitted …
out.println(“Login:”);
in.readln(userid);
out.println(“Password:”);
in.readln(passwd);
if (!security.check(userid, passwd)) {

out.println(“Login failed.”);
system.exit(-1);

}
// …

FIGURE 145.An example of procedure driven control (Java). The code prints out
messages and waits for input from the user.

From objects to subsystems DRAFT - DO NOT DISTRIBUTE

System Design 57 of 76

• Event-driven control. A main loop waits for an external event. Whenever an event
becomes available, it is dispatched to the appropriate object, based on information
associated with the event. This kind of control flow has the advantage of leading to a
simpler structure and to centralize all input in the main loop. However, it makes the
implementation of multi step sequences more difficult to implement.

• Threads. Threads (also called light weight threads to distinguish them from processes
which require more computing overhead) are the concurrent variation of procedure-
driven control: the system can create an arbitrary number of threads, each
responding to a different event. If a thread needs additional data, it waits for input
from a specific actor. This kind of control flow is probably the most intuitive of the
three mechanisms. However, debugging thread software requires good debugging
tools: preemptive thread schedulers introduce non-determinism in the system and,
thus, make it harder to find repeatable test cases.

Enumeration subscribers, eventStream;
Subscriber subscriber;
Event event;
EventStream eventStream;
//…
while (eventStream.hasMoreElements) {

event = eventStream.nextElement();
subscribers = dispatchInfo.getSubscribers(event);
while (subscribers.hasMoreElements()) {

subscriber = subscribers.nextElement()) {
subscriber.process(event);

}
}
//…

FIGURE 146.An example of main loop for event-driven control (Java). An event is
taken from an event queue and sent to objects interested in it.

From objects to subsystems DRAFT-DO NOT DISTRIBUTE

58 of 76 System Design

Procedure-driven control is useful for testing subsystems. A driver makes specific calls to
methods offered by the subsystem. For the control flow of the final system, though,
procedure-driven control should be avoided.

The trade-off between event-driven control and threads is more complicated. Event-driven
control is more mature than threads. Modern languages have only recently started to
provide support for thread programming. As more debugging tools are becoming available
and experience is accumulated, developing thread-based systems will become easier. Also,
many user interface packages supply the infrastructure for dispatching events and impose
this kind of control flow on the design. Although threads are more intuitive, they currently
introduce many problems during debugging and testing. Until more mature tools and
infrastructures are available for developing with threads, event-driven control flow is
preferred.

Once a control flow mechanism is selected, we can realize with a set of one or more control
objects. The role of control objects is to record external events, store temporary state about
them, and issue the right sequence of operation calls on the interface and entity objects
associated with the external event. On the one hand, localizing control flow decisions for a
use case into a single objects results into more understandable code, on the other hand, it
makes the system more resilient to changes in control flow implementation.

Thread thread;
Event event;
EventHandler eventHandler;
boolean done;
// …
while (!done) {

event = eventStream.getNextEvent();
eventHandler = new EventHandler(event)
thread = new Thread(eventHandler);
thread.start();

}
// …

FIGURE 147.An example of event processing with threads (Java). eventHandler is
an object dedicated to handling event. It implements the run() operation which is
invoked when thread is started.

From objects to subsystems DRAFT - DO NOT DISTRIBUTE

System Design 59 of 76

Encapsulating control flow

An example of encapsulation of control is the Command pattern [Gamma et al., 1994] (see
Figure 148). In interactive systems it is often desirable to execute, undo, or store user
requests without knowing the content of the request. The key to decoupling requests from
their handling is to turn requests into command objects which inherit from an abstract
Command class. The Command class defines how the command is executed, undone, or stored,
while the concrete class implements specific requests.

We can use the command pattern to decouple menu items from actions (see Figure 149).
Decoupling menu items from actions has the advantage of centralizing control flow (e.g.,
dialog sequencing) into control objects instead of spreading it between interface and entity
objects. A Menu, composed of MenuItems, creates a Command object of the appropriate class
whenever the corresponding MenuItem is selected by the user. The Application invokes
the execute() operation of the newly created Command object. If the user wishes to undo the
last request, the undo() operation of the last Command object is executed. Different Command
objects implement different requests (e.g., CopyCommand and PasteCommand).

FIGURE 148.Command pattern (UML class diagram).This pattern enables the
encapsulation of control such that user requests can be treated uniformly, independent of
the specific request.

execute()

Receiver

action2()

User

binds

action1()

ConcreteCommand1

execute()

ConcreteCommand2

execute()

Command

execute()

Calling Subsystem

invokes

From objects to subsystems DRAFT-DO NOT DISTRIBUTE

60 of 76 System Design

8.4.8. Identifying boundary conditions

In previous sections, we dealt with designing and refining the system decomposition. We
now have a better idea of how to decompose the system, how to distribute use cases among
subsystems, where to store data, and how to achieve access control and to ensure security.
We still need to examine the boundary conditions of the system, that is, to decide how the

FIGURE 149.An example of a command pattern (UML class diagram). In this example,
menu items and operations on documents are decoupled. This enables us to centralize
control flow in the command objects (CopyCommand and PasteCommand) instead of
spreading it across interface objects (MenuItem) and entity objects (Document).

execute()

Document

copy()

MenuItem

binds

paste()

CopyCommand

execute()

PasteCommand

execute()

Command

execute()

Menu

Application

From objects to subsystems DRAFT - DO NOT DISTRIBUTE

System Design 61 of 76

system is started, initialized, shut down and we need to define how we deal with major
failures, such as data corruption, whether it is caused by a software error or a power outage.

For example, we now have a good idea of how MyTrip should work in steady state. We have,
however, not yet addressed defining how MyTrip is initialized. For example, how are maps
loaded into the PlanningService? How is MyTrip installed in the car? How does MyTrip
know which PlanningService to connect to? How are drivers added to the
PlanningService? We quickly discover a set of use cases that has not been specified. We
call these the system administration use cases. System administration use cases specify the
behavior of a system during the start-up and shutdown phase.

It is common that system administration use cases are not specified during requirements
analysis or that they are treated separately. On the one hand, many system administration
functions can be inferred from the everyday user requirements (e.g., registering and
deleting users, managing access control), on the other hand, many functions are
consequences of design decisions (e.g., cache sizes, location of database server, location of
backup server), and not of requirement decisions.

FIGURE 150.Administration use cases for MyTrip (UML use case diagram).
ManageDrivers is invoked to add, remove, modify, or read data about drivers (e.g., user
name and password, usage log, encryption key generation). ManageMaps is invoked to
add, remove, or update maps that are used to generate trips. ManageServer includes all
the functions necessary to start-up and shutdown the server.

PlanningService

ManageDrivers

ManageMaps

ManageServer

Administrator

StartServer

ShutdownServer

ConfigureServer

<<uses>>

<<uses>>

<<uses>>

From objects to subsystems DRAFT-DO NOT DISTRIBUTE

62 of 76 System Design

We now modify the analysis model for MyTrip to include the administration use cases. In
particular, we add three uses cases: ManageDrivers, to add, remove, and edit drivers,
ManageMaps, to add, remove, and update maps used to generate trips, and ManageServer,
to perform routine configuration, start-up, and shutdown (see Figure 150). StartServer,
part of ManageServer, is provided as an example in Figure 151.

In this case, adding three use cases, that is, revising the use case model, does not impact the
subsystem decomposition. We added, however, new use cases to existing subsystems: the
MapDBStoreSubsystem needs to be able to detect whether it was properly shut down or not,
and needs to be able to perform consistency checks and repair corrupted data, if necessary.
We revise the description of MapDBStoreSubsystem.

Use case name StartServer

Entry condition 1. The PlanningServiceAdministrator logs into the server
machine.

Flow of events 2. Upon successful login, the PlanningServiceAdministrator
executes the startPlanningService command.

3. If the PlanningService was previously shutdown normally, the
server reads the list of legitimate Drivers and the index of active
Trips and Maps. If the PlanningService had crashed, it notifies
the PlanningServiceAdministrator and performs a consistency
check on the MapDBStore.

Exit condition 4. The PlanningService is available and waits for connections from
RoutingAssistants.

FIGURE 151.StartServer use case of the MyTrip system.

MapDBStoreSubsystem The MapDBStoreSubsystem is responsible for storing maps and trips in a
database for the PlanningSubsystem. This subsystem supports multiple
concurrent drivers and planning agents. When starting up, the
MapDBStoreSubsystem detects if it was properly shutdown. If not, it performs
a consistent check on the Maps and Trips and repairs corrupted data if necessary.

FIGURE 152.Revised description for MapDBStoreSubsystem based on the additional
StartServer use case of Figure 151 (Changes indicated in italics).

From objects to subsystems DRAFT - DO NOT DISTRIBUTE

System Design 63 of 76

When examining boundary conditions, we also need to investigate exceptional cases. For
example, the nonfunctional requirements of MyTrip specify that the system needs to tolerate
connection failures. For this reason, the RouteAssistant downloads the planned Trip at
the initial Destination. We also decide to download Segments that are close to the Trip, to
enable minimum replanning even though a connection might not be available.

In general, an exception is an unexpected event or error that occurs during the execution of
the system. Exceptions are caused by one of three different sources:

• A user error. The user mistakenly or deliberately input data that is about of bounds.
For example, a negative amount in a banking transaction could lead to transferring
money in the wrong direction if the system does not protect against such errors.

• A hardware failure. Hardware ages and fails. The failure of a network link, for
example, can momentarily disconnect two nodes of the system. A hard disk crash can
lead to the permanent loss of data.

• A software bug. An error can occur either because the system or one of its components
contains a design error. Although writing bug free software is difficult, individual
subsystem can anticipate errors from other subsystems and protect against them.

Exception handling is the mechanism by which a system treats an exception. In the case of a
user error, the system should display a meaningful error message to the user, such that she
can correct her input. In the case of a network link failure, the system needs to save its
temporary state in order to recover once the network comes back on line.

Developing reliable systems is a difficult topic. Often, trading-off some functionality can
make it easier on the design of the system. In MyTrip, we assumed that the connection is
always possible at the source destination, and that replanning could be impacted by
communication problems along the trip.

8.4.9. Anticipating change

System design introduces a strange paradox in the development process. On the one hand,
we want to construct solid walls between subsystems, to manage complexity by breaking
the system into smaller pieces, to prevent changes from one subsystem to impact others. On
the other hand, we want the software architecture to be modifiable to minimize the cost of
later change. These are conflicting goals that cannot be reconciled: we have to define an
architecture early to deal with complexity and we have to pay the price of change later in
the development process. We can, however, anticipate change and design for it, as sources of
later changes tend to be the same for most systems:

• New vendor or new technology. When components are used to build the system,
anticipate that the component will be replaced by an equivalent one from a different

From objects to subsystems DRAFT-DO NOT DISTRIBUTE

64 of 76 System Design

vendor. This change is frequent and generally difficult to cope with. The software
marketplace is dynamic and many vendors will start up and go out of business
before your project is completed.

• New implementation. When subsystems are integrated and are tested together, the
overall system response time is, more often than not, above stated or implicit
performance requirements: posting a debit on a bank information system may take
two minutes, a flight reservation system takes five minutes to book a flight. System
wide performance is difficult to predict and usually not optimized before integration:
developers focus on their subsystem first. This triggers the need for more efficient
datastructures and algorithms, and better interfaces, often under time pressure.

• New views. Testing the software with real users uncovers many usability problems.
These translate often into the creation of additional views on the same data.

• New complexity of the application domain. The deployment of a system triggers ideas of
new generalizations: a bank information system for one branch may lead to the idea
of a multi branch information system. Other times, the domain itself increases in
complexity: previously, flight numbers were associated with one plane and one plane
only. With the advent of carrier alliances, one plane can now have multiple flight
numbers from different companies.

• Errors. Unfortunately, many requirements errors are discovered only when real users
start using the system.

Modern object-oriented languages provide mechanisms that can minimize the impact of
change when anticipated. The use of inheritance in conjunction with abstract classes
decouples the interface of a subsystem from its actual implementation. In this chapter, we
have provided you with selected examples of design patterns [Gamma et al., 1994] that deal
with the above changes. Figure 153 summarizes the patterns and the type of change they
protect against.

Adapter (see example in Section 8.4.4) New vendor, new technology, new implementation. This pattern
encapsulates a piece of legacy code that was not designed to
work with the system. It also limits the impact of substituting
the piece of legacy code for a different component.

Bridge (see example in Section 8.4.5) New vendor, new technology, new implementation. This pattern
decouples the interface of a class from its implementation. It
serves the same purpose than the adapter pattern except that the
developer is not constrained by an existing piece of code.

FIGURE 153.Selected design patterns and the changes they anticipate.

From objects to subsystems DRAFT - DO NOT DISTRIBUTE

System Design 65 of 76

A reason for the high cost of change late in the process is the loss of design context.
Developers forget very quickly the reasons that pushed them to design complicated
workarounds or complex datastructures during early phases of the process. When changing
code late in the process, the likelihood of introducing errors into the system is high. To
protect against such situations, as many assumptions should be recorded. For example,
when using a design pattern to anticipate a certain change (from Figure 153), you should
record which change they are anticipating. In Chapter 9, Design Rationale, we describe
several techniques for recording the design alternatives and decisions.

8.4.10. Reviewing system design

Like requirements analysis, system design is an evolutionary and iterative activity. Unlike
requirements analysis, there is no external agent, such as the client, to review the successive
iterations and ensure better quality. This quality improvement activity, however, is still
necessary, and project managers and developers need to organize a review process to
substitute for it. Several alternatives exist, such as using the developers who were not
involved in system design to act as independent reviewer, or to use developers from another
project to act as a peer review. These review processes work only if the reviewers have an
incentive in discovering and reporting problems.

In addition to meeting the design goals that were identified during system design, we need
to ensure that the system design model is correct, complete, consistent, realistic, and
readable. The system design model is correct if the requirements analysis model can be
mapped to the system design model. You should ask the following questions to determine if
the system design is correct:

Command (see example in Section 8.4.7) New functionality. This patterns decouples the objects responsible
for command processing from the commands themselves. This
pattern protects these objects from changes due to new
functionality.

Observer (see example in Section 8.3.5) New views. This pattern decouples entity objects from their
views. Additional views can be added with entity objects being
modified.

Strategy (see example in Section 8.4.6) New vendor, new technology, new implementation. This pattern
decouples an algorithm from its implementation(s). It serves the
same purpose than the adapter and bridge patterns except that
the encapsulated unit is a behavior.

FIGURE 153.Selected design patterns and the changes they anticipate.

From objects to subsystems DRAFT-DO NOT DISTRIBUTE

66 of 76 System Design

• Can every subsystem be traced back to a use case or a nonfunctional requirement?

• Can every use case be mapped to a set of subsystems?

• Can every design goal be traced back to a nonfunctional requirement?

• Is every nonfunctional requirement addressed in the system design model?

• Has each actor an access policy?

• Is it consistent with the nonfunctional security requirement?

The model is complete if every requirement and every system design issue has been
addressed. You should ask the following questions to determine if the system design is
complete:

• Have the boundary conditions been handled?

• Was there a walkthrough of the use cases to identify missing functionality in the
system design?

• Have all use cases been examined and assigned a control object?

• Have all aspects of system design (i.e., hardware allocation, persistent storage, access
control, legacy code, boundary conditions) been addressed?

• Do all subsystems have definitions?

The model is consistent if it does not contain any contradiction. You should ask the
following questions to determine if a system design is consistent:

• Are conflicting design goals prioritized?

• Are there design goals that violate a non functional requirement?

• Are there multiple subsystems or classes with the same name?

• Are collections of objects exchanged among subsystems in a consistent manner?

The model is realistic if the corresponding system can be implemented. You ask the
following questions to determine if a system design is realistic:

• Are there any new technologies or components in the system? Were there any studies
to evaluate the appropriateness or robustness of these technologies or components?

• Have performance and reliability requirements been reviewed in the context of the
subsystem decomposition? For example, is there a network connection on the critical
path of the system?

• Have concurrency issues (e.g., contention, deadlocks, mutual exclusion) been
addressed?

The model is readable if developers not involved in the system design can understand the
model. You should ask the following questions to ensure that the system design is readable:

From objects to subsystems DRAFT - DO NOT DISTRIBUTE

System Design 67 of 76

• Are subsystem names understandable?

• Do entities (e.g., subsystems, classes, operations) with similar names denote similar
phenomena?

• Are all entities described at the same level of detail?

In many projects, you will experience that system design and implementation overlap quite
a bit. Parts of the implementation begin before the completion of the system design enabling
developers to test risky design decisions early. This leads to many partial reviews instead of
an encompassing review followed by a client sign-off, as for requirements analysis.
Although this process yields greater flexibility, it also requires developers to track open
issues more carefully. Many difficult issues tend to be resolved late not because they are
difficult, but because they fell through the cracks of the organization.

Managing system design DRAFT-DO NOT DISTRIBUTE

68 of 76 System Design

8.5. Managing system design

In this section we discuss issues related to managing the system design activities in the
context of a multi team project. As in requirements analysis, the primary challenge in
managing the system design in such a project is to maintain consistency while using as
many resources as possible. In the end, the software architecture and the system interfaces
should describe a single coherent system understandable to a single person.

We first describe a document template that can be used to document the results of system
(Section 8.5.1). Next, we describe the role assignment during system design (Section 8.5.2)
and address communication issues during system design (Section 8.5.3). Next, we address
management issues related to the iterative and in MyTrip nature of system design
(Section 8.5.4).

8.5.1. Documenting system design

The product of the system design phase is the System Design Document (SDD). It describes
the software architecture, including the design goals set by the project, the subsystem
decomposition (UML class diagrams), hardware software mapping (UML deployment
diagrams), data management, access control, legacy code, and boundary conditions. The
SDD is used to define interfaces between teams of developers and as reference when
architecture level decisions need to be revisited. The audience for the SDD includes the
project management, the system architects (i.e., the developers who participate in the
system design) and the developers who design and implement each subsystem. The
following template is an example of a SDD:

System Design Document (SDD)

Revision history

1. Introduction
1.1 Purpose of the system
1.2 Design goals
1.3 Definitions, acronyms, and abbreviations
1.4 References
1.5 Overview

2. Current software architecture

Managing system design DRAFT - DO NOT DISTRIBUTE

System Design 69 of 76

The first section of the SDD is an introduction. Its purpose is to provide a brief overview of
the software architecture and the design goals. It also provides references to other
documents and traceability information. (e.g., related requirements analysis document,
references to existing systems, constraints impacting the software architecture).

The second section, Current software architecture describes the architecture of the system
being replaced. If there is no previous system, this section can be replaced by a survey of
current architectures for similar systems. The purpose of this section is to make explicit the
background information that system architects used, their assumptions, and common issues
the new system will address.

The third section, Proposed system, architecture documents the system design model of the
new system. It is divided into seven subsections:

• Overview presents an overview of the software architecture and briefly describes the
assignment of functionality to each subsystem.

• Subsystem decomposition describes the decomposition into subsystems and the
responsibilities of each subsystems. This is the main product of system design.

• Hardware/software mapping describes how subsystems are assigned to hardware and
off-the shelf components. It also lists the issues introduced by multiple nodes and
software reuse.

• Persistent data management describes the persistent data stored by the system and the
data management infrastructure required for it. This section typically includes the
description of data schemes, the selection of a database, and the description of the
encapsulation of the database.

• Access control and security describes the user model of the system in terms of an access
matrix. This section also describes security issues, such as the selection of an
authentication mechanism, the use of encryption, and the management of keys.

3. Proposed software architecture
3.1 Overview
3.2 Subsystem decomposition
3.3 Hardware/software mapping
3.4 Persistent data management
3.5 Access control and security
3.6 Global software control
3.7 Boundary conditions

4. Subsystem services
5. Glossary

Appendixes

Index

Managing system design DRAFT-DO NOT DISTRIBUTE

70 of 76 System Design

• Global software control describes how the global software control is implemented. In
particular, this section should describe how requests are initiated and how
subsystems synchronize. This section should list and address synchronization and
concurrency issues.

• Boundary conditions describes the start-up, shutdown, and error behavior of the
system. If new use cases are discovered for system administration, these should be
included in the requirements analysis document, not in this section.

The fourth section, Subsystem services, describes the services provided by each subsystems in
terms of operations. Although this section is usually empty or incomplete in the first
versions of the SDD, this section servers as a reference for teams for the boundaries between
their subsystems. The interface of each subsystem is derived from this section and detailed
in the Object Design Document.

The SDD should be written after the initial system decomposition is done, that is, system
architects should not wait until all system design decisions are made before publishing the
document. The SDD, moreover, should be updated throughout the process when design
decisions are made or problems are discovered. The SDD, once published, is baselined and
put under configuration management. The revision history section of the SDD provides a
history of changes as a list of changes, including author responsible for the change, date of
change, and brief description of the change.

8.5.2. Assigning responsibilities

Unlike requirements analysis, system design is mostly the realm of developers. The client
and the end user fades to the background. Note, however, that many activities in system
design trigger revisions to the requirements analysis model. The client and the user should
be brought back into the process for such revisions. System design in complex systems is
centered around the architecture team. This is a cross functional team made of architects
(who define the subsystem decomposition) and selected developers (who will take part in
the implementation of the subsystem). It is critical that system design include persons that
are exposed to the consequences of system design decisions. The architecture team should
start to work at full force right after the requirements analysis phase and continue to
function until the end of the integration phase. This creates an incentive for the architecture
team to anticipate problems encountered during integration. Below are the main roles of
system design:

• The architect is the main role of system design. The architect ensures consistency in
design decisions and interface styles. The architect ensures the consistency of the
design in the configuration management and testing teams, in particular in the
formulation of the configuration management policy as well as the system
integration strategy This is mainly an integration role consuming information from

Managing system design DRAFT - DO NOT DISTRIBUTE

System Design 71 of 76

each subsystem team. The architect is the leader of the cross-functional architecture
team.

• Architecture liaisons are the members of the architecture team. They are
representatives from the subsystem teams. They convey information from and to
their teams and negotiate interface changes. During system design they focus on the
subsystem services, during the implementation phase focus on the consistency of the
APIs.

• The document editor, configuration manager, and reviewer roles are the same as for
requirements analysis.

The number of subsystems determines the size of the architecture team. For complex
systems, an architecture team is introduced for each level of abstraction. In all cases, there
should be one integrating role on the team to ensure consistency and the understandability
of the architecture by a single individual.

8.5.3. Communicating about system design

Communication during system design should be less challenging than during requirements
analysis: the functionality of the system has mostly been defined, project participants have
similar backgrounds and by now, should know each other better. Communication is still
difficult, due to new sources of complexity:

• Size. The number of issues to be dealt with increases as developers start designing.
The number of items developers manipulate increases: each piece of functionality
requires many operations on many objects. Moreover, developers investigate, often
concurrently, multiple designs and multiple implementation technologies.

• Change. The subsystem decomposition and the interfaces of the subsystems are in
constant flux. Terms used by developers to name different parts of the system evolve
constantly. If the change is rapid, developers may not be discussing the same version
of the subsystem, which can lead to much confusion.

• Level of abstraction. Discussions about requirements can be made concrete by using
interface mock-ups and analogies with existing systems. Discussions about
implementation become concrete when integration and test results are available.
System design discussions are seldom concrete as consequences of design decisions
are felt only later, during implementation and testing.

• Reluctance to confront problems. The level of abstraction of most discussions can also
make it easy to delay the resolution of difficult issues. A typical resolution of control
issues is often: “let us revisit this issue during implementation.” While it is usually
desirable to delay certain design decisions, such as the internal datastructures and
algorithms used by each subsystem for example, any decision that has an impact on
the system decomposition and the subsystem interfaces should not be delayed.

Managing system design DRAFT-DO NOT DISTRIBUTE

72 of 76 System Design

• Conflicting goals and criteria. Individual developers often optimize different criteria. A
developer experienced in user interface design will be biased towards optimizing
response time. A developer experienced in databases might optimize throughput.
These conflicting goals, especially when implicit, result in developers pulling the
system decomposition in different directions, and lead to inconsistencies.

The same techniques we discussed in requirements analysis (see Section 7.4.3) can be
applied during system design:

• Identify and prioritize the design goals for the system and make them explicit (see
Section 8.4.2). If the developers concerned with system design have an input in this
process, they will have an easier time committing to these design goals. Design goals
also provide an objective framework against which decisions can be evaluated.

• Make the current version of the system decomposition available to all concerned. A live
document distributed via the internet is one way to achieve rapid distribution. Using
a configuration management tool to maintain the system design documents helps
developers identifying recent changes.

• Maintain an up-to-date glossary. As in requirements analysis, defining terms explicitly
reduces misunderstandings. When identifying and modeling subsystems, provide
definitions in addition to names. A UML diagram with only subsystem names is not
sufficient for supporting effective communication. A brief and substantial definition
should accompany every subsystem and class name.

• Confront design problems. Delaying design decisions can be beneficial, but this does
not prevent design problems to be confronted. If an issue will be revisited during
implementation, several possible alternatives should be explored and described. This
ensures that issues that are delayed can be delayed without serious impact on the
system decomposition.

• Iterate. Selected excursions into the implementation phase can improve the system
design. For example, new features in a vendor supplied component can be evaluated
by implementing a vertical prototype (see Section 8.5.4) for the functionality most
likely to benefit from the feature.

Finally, no matter how much effort is expended on system design, the system
decomposition and the subsystem interfaces will almost certainly change during
implementation. As new information about implementation technologies becomes
available, developers have a clearer understanding of the system, and design alternatives
are discovered. Developers should anticipate change and reserve some time to update the
SDD before system integration.

Managing system design DRAFT - DO NOT DISTRIBUTE

System Design 73 of 76

8.5.4. Iterating over the system design

As in the case of requirements, system design occurs through successive iteration and
change. Change, however, should be controlled to prevent chaos, especially in complex
projects including many participants. We distinguish three types of iterations during system
design. First major decisions early in the system design impact subsystem decomposition as
each of the different activities of system design are initiated. Second, revisions to the
interfaces of the subsystems occur when evaluation prototypes are done to evaluate specific
issues. Third, errors and oversights discovered late trigger changes to the subsystem
interfaces and sometimes to the system decomposition itself.

The first set of iterations is best handled through face-to-face and electronic brainstorming.
Definitions are still in flux, developers do not have yet a grasp of the whole system, and
communication should be maximized at the expense of formality or procedure. Often in
team-based projects, the initial system decomposition is designed before the requirements
analysis are complete. Decomposing the system early enables the responsibility of different
subsystems to be assigned to different teams. Change and exploration should be
encouraged if only to broaden the developers shared understanding or to generate
supporting evidence for the current design. For this reason, there should not be a
bureaucratic formal change process during this phase.

The second set of iterations aims at solving difficult and focused issues, such as the choice of
a specific vendor or technology. The subsystem decomposition is stable (since it is should be
independent of vendors and technology, see Section 8.4.9) and most of these explorations
aim at identifying whether a specific package is appropriate for the system or not. During
this period, developers can also realize a vertical prototype1 for a critical use case to test the
appropriateness of the decomposition. This enables control flow issues to be discovered
early and addressed. Again, a formal change process is not necessary. A list of pending
issues and their status can help developers propagate the result of a technology
investigation quickly.

The third set of iterations remedies design problems discovered late. Although developers
would much rather avoid any such iterations as they tend to incur a high cost and introduce
many new bugs in the system, they should anticipate them. Anticipating late iterations
includes documenting dependencies among subsystems, the design rationale for subsystem
interfaces, and any work around that is likely to break in case of change. Change should be
carefully managed and a change process, similar to the one tracking requirements changes,
should be put in place.

1. A vertical prototype implements completely a restricted functionality (e.g., interface, control, and entity
objects for one use case) while a horizontal prototype implements partially a broad range of functionality
(e.g., interface objects for a number of use cases).

Managing system design DRAFT-DO NOT DISTRIBUTE

74 of 76 System Design

We can achieve the progressive stabilization of the subsystem decomposition using the
concept of design window. In order to encourage change while controlling it, critical issues
are left open only during a specified time. For example, the hardware/software platform on
which the system is targeted should be resolved early in the project, such that purchasing
decisions for the hardware can be done in time for the developers. Internal datastructures
and algorithms, however, can be left open until after integration, allowing developers to
revise them based on performance testing. Once the design window is past, the issue is
resolved and can only be reopened in a subsequent iteration.

With the pace of technology innovation quickening, many changes can be anticipated when
a dedicated part of the organization is responsible for technology management. Technology
managers scan new technologies, evaluate them, and accumulate knowledge that is used
during the selection of components. Often, change happens fast enough that companies are
not aware of which technologies they provide themselves.

Exercises DRAFT - DO NOT DISTRIBUTE

System Design 75 of 76

8.6. Exercises

1. Consider an on-line airline reservation system allowing airlines to offer tickets and
travelers to purchase tickets. Reservations and seat assignments can be made when
tickets are purchased. Multiple competing airlines can make offers and travelers from
different countries can purchase tickets. Design a subsystem decomposition for this
system taking into account hardware/software mapping, data storage, and access
control issues (that is, ignore global software control and boundary conditions). State
your design goals.

2. Assuming multiple redundant servers and a goal of no downtime, describe the
following boundary conditions for the above airline reservation system:

• server down,

• server software upgrade, and

• plane ticket price upgrade.

3. Consider an existing, fax-based, problem reporting system for an aircraft
manufacturer. You are part of a re-engineering project replacing the core of the
system by a computer-based system, including a database and a notification system.
The client insists on keeping the fax as an entry point for problem reports. You
propose to replace it by email. Discuss the technical and managerial evaluation, pros,
and cons of three possible solutions: fax only, email only, fax and email. Describe how
you shield the rest of the system from this decision.

4. You are designing the access control policies for a web-based retail store. Customers
access the store via the web, browse product information, input their address and
payment information, and purchase products. Suppliers can add new products,
update its information, and receive orders.The store owner sets the retail prices,
makes tailored offers to customers based on their purchasing profiles, and provides
marketing services. You have to deal with three actors: StoreAdministrator,
Supplier, and Customer. Design an access control policy for all three actors.
Customers can be created via the web while Suppliers are created by the
StoreAdministrator. Include your rationale for every decision.

References DRAFT-DO NOT DISTRIBUTE

76 of 76 System Design

8.7. References

[Booch, 1994] G. Booch, Object-Oriented Analysis and Design with Applications, Second
Edition, Benjamin/Cummings Publishing Company, Inc., Redwood City, CA, 1994.

[Fowler, 1997] M. Fowler, Analysis Patterns: Reusable Object Models, Addison-Wesley,
Reading, MA, 1997.

[Erman 1980] Erman, L. D., F. Hayes-Roth, et al. “The Hearsay-II Speech-Understanding
System: Integrating Knowledge to Resolve Uncertainty.” Computing Surveys 12(2): 213-253.

[Gamma et al., 1994] E. Gamma, R. Helm, R. Johnson, & J. Vlissides, Design Patters: Elements
of Reusable Object-Oriented Software, Addison Wesley, Reading, MA, 1994.

[JCA, 1998] Java Cryptography Architecture, JDK Documentation, Javasoft, 1998.

[JDBC, 1998] JDBCTM - Connecting Java and Databases, JDK Documentation, Javasoft, 1998.

[Microsoft, 1995] “Chapter 9: Open Database Connectivity (ODBC) 2.0 Fundamentals'',
Microsoft Windows Operating Systems and Services Architecture, Microsoft Corporation, 1995.

[Mowbray & Malveau, 1997] T.J. Mowbray & R.C. Malveau. CORBA Design Patterns. Wiley
and Sons. 1997.

[Nye et. al, 1992] A. Nye & T. O'Reilly. X Toolkit Intrinsics Programming Manual: OSF/Motif 1.1
Edition for X11 Release 5 The Definitive Guides to the X Windows Systems, Vol. 4, O Reilly &
Associates, Inc., Sebastopol, CA, 1992.

[OMG, 1995] Object Management Group. The Common Object Request Broker: Architecture and
Specification. John Wiley & Sons, New York, 1995.

[RMI, 1998] Java Remote Method Invocation, JDK Documentation, Javasoft, 1998.

[Rumbaugh et al., 1991] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
Object-Oriented Modeling and Design. Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 1991.

[Shaw & Garlan, 1996] M. Shaw & D. Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

[Siewiorek & Swarz, 1992] Reliable Computer Systems: Design and Evaluation. Second edition.
Digital Press, Burlington MA, 1992.

[Silberschatz et al, 1991] A. Silberschatz, J. Peterson, & P. Galvin. Operating System
Concepts. Third Edition. Addison Wesley, Reading, MA, 1991.

[Tanenbaum, 1996] A.S. Tanenbaum. Computer Networks. Third Edition. Prentice Hall Inc.,
Upper Saddle River, NJ, 1996.

