
Guenter Teubner 15-413 Software Engineering Fall 1998 1

2

15-413

Lecture Notes on
Software Configuration

Management

Original slides by Guenter Teubner

Technische Universitaet Muenchen

Institut fuer Informatik

Zia Syed

Carnegie Mellon University

Guenter Teubner 15-413 Software Engineering Fall 1998 2

Outline of the Lecture

v Software Configuration Management (SCM)
w Motivation: Why software configuration management?

w Definition: What is software configuration management?

v Terminology and Methodology
w What are Configuration Items, Baselines, etc. ?

w What goes under version control?

v Software Configuration Management Plans
w Standards (Example: IEEE 828-1990)

w Basic elements of IEEE 828-1990

v Configuration Management Tools

v CVS at a glance
w The basics of CVS

w Examples for the most common use cases

Guenter Teubner 15-413 Software Engineering Fall 1998 3

Why Software Configuration Management ?

v The problem:
w Multiple people have to work on software that is changing

w More than one version of the software has to be supported:
– Released systems

– Custom configured systems (different functionality)

– System(s) under development

w Software must run on different machines and operating
systems

í Need for coordination

v Software Configuration Management
w manages evolving software systems

w controls the costs involved in making changes to a system

Guenter Teubner 15-413 Software Engineering Fall 1998 4

What is Software Configuration Management

v Definition:
w A set of management disciplines within the software

engineering process to develop a baseline.

v Description:
w Software Configuration Management encompasses the

disciplines and techniques of initiating, evaluating and
controlling change to software products during and after the
software engineering process.

v Standards (approved by ANSI)
w IEEE 828: Software Configuration Management Plans

w IEEE 1042: Guide to Software Configuration Management

Forward Definition!

Guenter Teubner 15-413 Software Engineering Fall 1998 5

SCM Activities

v Software Configuration Management (SCM) Activities:
w Configuration identification (labeling and identification)

w Baseline management

w Change control (mechanism needed to coordinate parallel
activities)

w Reviews (status accounting, audits)

w Release management

v No fixed rules:
w SCM functions are usually performed in different ways

(formally, informally) depending on the project type and life-
cycle phase (research, development, maintenance).

Guenter Teubner 15-413 Software Engineering Fall 1998 6

Terminology and Methodology

v What are
w Configuration Items

w Baselines

w SCM Directories

w Versions, Revisions and Releases

í The usage of the terminology presented here is not strict
but varies for different configuration management
systems. We will see for example that the configuration
management system used for this class uses different
names than those mentioned in the IEEE standards.

Guenter Teubner 15-413 Software Engineering Fall 1998 7

Terminology: Configuration Item

 “An aggregation of hardware, software, or both, that is
designated for configuration management and treated as a
single entity in the configuration management process.”

v Software configuration items are not only program code segments
but all type of documents according to development, e.g

í all type of code files

í drivers for tests

í analysis or design documents

í user or developer manuals

í system configurations (e.g. version of compiler used)

v In some systems, not only software but also hardware
configuration items (CPUs, bus speed frequencies) exist!

Guenter Teubner 15-413 Software Engineering Fall 1998 8

Finding Configuration Items (CIs)

v Large projects typically produce thousands of entities
(files, documents, ...) which must be uniquely identified.

v But not every entity needs to be configured all the time.
Issues:
w What: Selection of CIs (What should be managed?)

w When: When do you start to place an entity under
configuration control?

í Starting too early introduces too much bureaucracy

í Starting too late introduces chaos

Guenter Teubner 15-413 Software Engineering Fall 1998 9

Finding Configuration Items (continued)

v Some of these entities must be maintained for the
lifetime of the software. This includes also the phase,
when the software is no longer developed but still in
use; perhaps by industrial customers who are expecting
proper support for lots of years.

v An entity naming scheme should be defined
so that related documents have related names.

v Selecting the right configuration items is a skill that
takes practice
w Very similar to object modeling

w Use techniques similar to object modeling for finding CIs

Guenter Teubner 15-413 Software Engineering Fall 1998 10

Configuration Identification is similar to Object Identification

STARS CI

Models Subsystems Documents

Object Model Dynamic Model

Repair Inspection

. . . .

Code Documents Unit Test

RAD SPMP

.

. . . .

STARS CI

promote()

release()

STARS

Guenter Teubner 15-413 Software Engineering Fall 1998 11

Tasks for the Configuration Managers in STARS

Define configuration itemsDefine configuration items

Guenter Teubner 15-413 Software Engineering Fall 1998 12

Terminology: Baseline

 “A specification or product that has been formally reviewed
and agreed to by responsible management, that thereafter
serves as the basis for further development, and can be
changed only through formal change control procedures.”

Examples:
Baseline A: The API of a program is completely defined; the bodies of

the methods are empty.

Baseline B: All data access methods are implemented and tested;
programming of the GUI can start.

Baseline C: GUI is implemented, test-phase can start.

Guenter Teubner 15-413 Software Engineering Fall 1998 13

More on Baselines

v As systems are developed, a series of baselines is
developed, usually after a review (analysis review, design
review, code review, system testing, client acceptance, ...)
w Developmental baseline (RAD, SDD, Integration Test, ...)

– Goal: Coordinate engineering activities.

w Functional baseline (first prototype, alpha release, beta release)
– Goal: Get first customer experiences with functional system.

w Product baseline (product)
– Goal: Coordinate sales and customer support.

v Many naming scheme for baselines exist (1.0, 6.01a, ...)

v 3 digit scheme:

Release
 (Customer)

Version
 (Developer)

Revision
(Developer)

7.5.5

Guenter Teubner 15-413 Software Engineering Fall 1998 14

Baselines in SCM

Official Release

Baseline A (developmental)

Baseline B (functional)

Baseline C (beta test)

All changes relative to baseline A

All changes relative to baseline B

All changes relative to baseline C

Guenter Teubner 15-413 Software Engineering Fall 1998 15

SCM Directories

v Programmer’s Directory (IEEE: Dynamic Library)
w Library for holding newly created or modified software

entities. The programmer’s workspace is controlled by the
programmer only.

v Master Directory (IEEE: Controlled Library)
w Manages the current baseline(s) and for controlling changes

made to them. Entry is controlled, usually after verification.
Changes must be authorized.

v Software Repository (IEEE: Static Library)
w Archive for the various baselines released for general use.

Copies of these baselines may be made available to
requesting organizations.

Guenter Teubner 15-413 Software Engineering Fall 1998 16

Foo’95 Foo’98

Standard SCM Directories

v Programmer’s Directory
w (IEEE Std: “Dynamic Library”)

w Completely under control of one
programmer.

v Master Directory
w (IEEE Std: “Controlled Library”)

w Central directory of all
promotions.

v Software Repository
w (IEEE Std: “Static Library”)

w Externally released baselines.

Central source
code archive

Release

Promotion

Guenter Teubner 15-413 Software Engineering Fall 1998 17

v Two types of controlling change:
w Promotion: The internal development state of a software is changed.
w Release: A set of promotions is distributed outside the development

organization.

v Approaches for controlling change to libraries (Change Policy)
w Informal (good for research type environments)
w Formal approach (good for externally developed CIs and for releases)

Controlling Changes

Promotion Release

Software Repository
User

Programmer

Promote
Policy

Release
Policy

Master
Directory

Guenter Teubner 15-413 Software Engineering Fall 1998 18

Change Policies

v Whenever a promotion or a release is performed, one or
more policies apply. The purpose of change policies is
to guarantee that each version, revision or release (see
next slide) conforms to commonly accepted criteria.

v Examples for change policies:
 No developer is allowed to promote source code which cannot

be compiled without errors and warnings.

 No baseline can be released without having been beta-tested
by at least 500 external persons.

Guenter Teubner 15-413 Software Engineering Fall 1998 19

Tasks for the Configuration Managers in STARS

Define configuration itemsDefine configuration items

Define promote /release policiesDefine promote /release policies

Guenter Teubner 15-413 Software Engineering Fall 1998 20

Version vs. Revision vs. Release

v Version:
w An initial release or re-release of a configuration item

associated with a complete compilation or recompilation of
the item. Different versions have different functionality.

v Revision:
w Change to a version that corrects only errors in the

design/code, but does not affect the documented
functionality.

v Release:
w The formal distribution of an approved version.

Guenter Teubner 15-413 Software Engineering Fall 1998 21

SCM planning

v Software configuration management planning starts
during the early phases of a project.

v The outcome of the SCM planning phase is the

 Software Configuration Management Plan (SCMP)

 which might be extended or revised during the rest of
the project.

v The SCMP can either follow a public standard like the
IEEE 828, or an internal (e.g. company specific)
standard.

Guenter Teubner 15-413 Software Engineering Fall 1998 22

The Software Configuration Management Plan

v Defines the types of documents to be managed and a
document naming scheme.

v Defines who takes responsibility for the CM procedures
and creation of baselines.

v Defines policies for change control and version
management.

v Describes the tools which should be used to assist the
CM process and any limitations on their use.

v Defines the configuration management database used to
record configuration information.

Guenter Teubner 15-413 Software Engineering Fall 1998 23

Outline of a Software Configuration
Management Plan (SCMP, IEEE 828-1990)

v 1. Introduction
w Describes purpose, scope of

application, key terms and
references

v 2. Management (WHO?)
w Identifies the responsibilities

and authorities for
accomplishing the planned
configuration management
activities

v 3. Activities (WHAT?)
w Identifies the activities to be

performed in applying to the
project.

v 4. Schedule (WHEN?)
w Establishes the sequence and

coordination of the SCM
activities with project mile
stones.

v 5. Resources (HOW?)
w Identifies tools and

techniques required for the
implementation of the SCMP

v 6. Maintenance
w Identifies activities and

responsibilities on how the
SCMP will be kept current
during the life-cycle of the
project.

Guenter Teubner 15-413 Software Engineering Fall 1998 24

Tasks for the Configuration Managers in STARS

Define configuration itemsDefine configuration items

Define promote /release policiesDefine promote /release policies

Define responsibilitiesDefine responsibilities

Guenter Teubner 15-413 Software Engineering Fall 1998 25

Tailoring the SCMP

v The IEEE standard allows quite a bit flexibility for
preparing an SCMP.

v To conform to the rest of the project, the SCMP may be
w tailored upward:

– to add information

– to use a specific format

w tailored downward
– Some SCMP components might not apply to a particular project.

– Instead of omitting the associated section, mention its
applicability.

– Information that has not been decided on at the time the SCMP
is approved should be marked as “to be determined”.

Guenter Teubner 15-413 Software Engineering Fall 1998 26

Conformance to the IEEE Standard 828-1990

v Presentation format & Minimum information
w A separate document or a section embedded in another

document titled “Software Configuration Management Plan”.

w 6 Sections: Introduction, Management, Activities, Schedules,
Resources and Plan Maintenance

v Consistency Criteria:
w All activities defined in the SCMP are assigned to an

organizational unit or person and they are associated with
resources to accomplish the activities.

w All identified Configuration items have defined processes for
baseline establishment and change control.

v If the above criteria are met, the SCMP can include the
following sentence:

“This SCMP conforms with the requirements of IEEE Std 828-1990.”

Guenter Teubner 15-413 Software Engineering Fall 1998 27

Tools for Software Configuration Management

v Software configuration management is normally
supported by tools with different functionality.

v Examples:
w RCS

– very old but still in use; only version control system

w CVS
– based on RCS, allows concurrent working without locking

w Perforce
– Repository server; keeps track of developer’s activities

w ClearCase
– Multiple servers, process modeling, policy check mechanisms

Guenter Teubner 15-413 Software Engineering Fall 1998 28

Tasks for the Configuration Managers in STARS

Define configuration itemsDefine configuration items

Define promote /release policiesDefine promote /release policies

Define responsibilitiesDefine responsibilities

Set up configuration management systemSet up configuration management system

SCMP following the IEEE 828-1990 standard

Guenter Teubner 15-413 Software Engineering Fall 1998 29

Summary

v Software Configuration Management is an elementary
part of the project management plan to manage evolving
software systems and coordinate changes to them.

v SCM is performed by following a SCM plan. This plan
can either follow a public standard (e.g. IEEE 828) or an
internal standard.

v It is necessary to tailor a standard to a particular project:
w Large projects need detailed plans to be successful

w Small projects can’t afford the bureaucracy of such plans

v SCM is supported by tools. Their functionality varies
from simple version storage tools to very sophisticated
systems with automated procedures for policy checks
and support for the creation of SCM documents.

Guenter Teubner 15-413 Software Engineering Fall 1998 30

CVS
Concurrent Version System

Guenter Teubner 15-413 Software Engineering Fall 1998 31

 CVS at a glance

v We will use CVS (Concurrent Version System) as
version management system for this project during
development. CVS is a shell-based, freely available
configuration management system with a very short
learning time for standard users.

v For easy access, we provide also a web-interface to the
repository which allows no changes to the repository.

v The Configuration Manager of the project is ???. He will
install and operate the system and provide basic help
for the other students.

Guenter Teubner 15-413 Software Engineering Fall 1998 32

How CVS works ...

v Configuration Manager
w Creates one central repository for all developers.

w Structures the repository by defining modules which
represent directory trees.

v Developer
w Has his/her own working directory.

w Selects the part of the repository (modules) he wants to work
with.

w Receives copies of all these modules. He can then work on his
local copies.

w Adds new files to the repository.

w Modifies existing ones.

w Resolves conflicts when two developers have edited the same
part of the same file simultaneously.

Guenter Teubner 15-413 Software Engineering Fall 1998 33

CVS Tutorial Operations

v Setting up a master directory (CVS: Repository)

v Creating the programmers directory
v Adding a new file to the repository
v Getting a file from the repository
v Updating a file in your local directory
v Editing a file and resolving a conflict
v Promoting your changes to a file
v Getting information about a file
v Deleting a file from the repository

Guenter Teubner 15-413 Software Engineering Fall 1998 34

Creating the programmers directory

v Before you can use CVS, you have to set the following
two environment variables:
w Variable: CVSROOT

w Value: <Directory has to be defined>

w Variable: EDITOR

w Value: <Your preferred editor>

v Set this variables in your login-scripts so that you can be
sure, that they definitely exist when you are working in
the computer lab.

v Create a directory for the STARS, enter it and type
cvs checkout <module name>

Guenter Teubner 15-413 Software Engineering Fall 1998 35

Creating the programmers directory (continued)

v What is this “module name”?
w CVS doesn't work on ordinary directory trees; you need to

work within a directory that CVS created for you. Just as you
check out a book from a library before taking it home to read
it, you use the cvs checkout command to get a directory
tree from CVS before working on it. The module name
specifies, which tree you get from the repository as there can
be more than one.

v Only the configuration manager can create modules for
you. If you want to establish a new module (e.g. for
bringing also the HTML documentation under version
control), you have to contact ????.

Guenter Teubner 15-413 Software Engineering Fall 1998 36

Creating the programmers directory

There is nothing special to do when you
create the working directory. All you need
is a directory (here called Example) and two
environment variables indicating where to
find the repository and which editor should
be used for typing comments, etc.

There is nothing special to do when you
create the working directory. All you need
is a directory (here called Example) and two
environment variables indicating where to
find the repository and which editor should
be used for typing comments, etc.

Guenter Teubner 15-413 Software Engineering Fall 1998 37

Getting files from the repository

v Situation: You want to get a copy of a file you have
currently not in your local directory. If the file belongs
to a different module, you have to checkout the module.

v Command: cvs checkout module

v If you deleted a file by accident and want it back,
simply request the most recent version from the
repository. Remember that this will not bring back the
changes you made locally before!

v Command: cvs update filename

Guenter Teubner 15-413 Software Engineering Fall 1998 38

Getting files from the repository

v If you modified a file and want to revert to the previous
version.

v Command: cvs update –p –r ver file > file

Guenter Teubner 15-413 Software Engineering Fall 1998 39

Getting files from the repository

The cvs checkout command creates copies
of the files in the repository in your local
directory. You can retrieve either single
files or complete directories .

The cvs checkout command creates copies
of the files in the repository in your local
directory. You can retrieve either single
files or complete directories .

The letter in front of the file name
indicates the performed operation
on the file. The U means updated.

The letter in front of the file name
indicates the performed operation
on the file. The U means updated.

Guenter Teubner 15-413 Software Engineering Fall 1998 40

Working with your files

You can work with the files in the working
directory as if CVS does not exist. You can
edit or compile them and you can also create
new files (here GoodbyeWorld.java).

You can work with the files in the working
directory as if CVS does not exist. You can
edit or compile them and you can also create
new files (here GoodbyeWorld.java).

Create a new file in the editorCreate a new file in the editor

Guenter Teubner 15-413 Software Engineering Fall 1998 41

Adding a file to the repository

v Situation: A file which is currently not under version
control has to be added to the repository.

v Command: cvs add filename

v You still have to do a cvs commit after this command
to make the addition(s) actually take affect.

v You may make any number of new files in your
programmers directory, but they will not be committed
to the central repository unless you do a cvs add.

Guenter Teubner 15-413 Software Engineering Fall 1998 42

Adding a file (example)

Files and directories can be added with
the cvs add command. The added files
become visible to other developers after
the next cvs commit (see slides 48/49).

Files and directories can be added with
the cvs add command. The added files
become visible to other developers after
the next cvs commit (see slides 48/49).

Guenter Teubner 15-413 Software Engineering Fall 1998 43

Updating a local file

v Situation: You have a local, possibly outdated copy of a
file which you have edited. You now want to get the
most recent version with all changes done by other
developers (merged with your changes).

v Command: cvs update filename

v CVS will inform you, if the file
w has not changed in the meantime

w has been updated (new code only from other developers)

w has been merged (new code also from you)

w couldn’t be completely merged, because a conflict was found

Guenter Teubner 15-413 Software Engineering Fall 1998 44

Updating a local file

To update your local working directory, run cvs update.
You get a list of all files with a letter indicating the
performed operation on the file during the update. The
most common operations are “U” (file has been updated),
“M” (file has been merged), and “?” (file is unknown).
CVS does not list the known, unchanged files. In this
example, HelloWorld.java has been updated. The new
version prints the string three times.

To update your local working directory, run cvs update.
You get a list of all files with a letter indicating the
performed operation on the file during the update. The
most common operations are “U” (file has been updated),
“M” (file has been merged), and “?” (file is unknown).
CVS does not list the known, unchanged files. In this
example, HelloWorld.java has been updated. The new
version prints the string three times.

Guenter Teubner 15-413 Software Engineering Fall 1998 45

Resolving a conflict

v Situation: You asked for an update of one or more files.
During this process, you got at least one message
looking like the following:
rcsmerge: warning: conflicts during merge

cvs update: conflicts found in <filename>

v To resolve the conflict, start your favorite editor and
search the file for the following construct:

<<<<<<< filename
 if (! error) {
 exit (1);
 }
=======
 if (! error) {
 exit (0);
 }
>>>>>>> 1.9

Guenter Teubner 15-413 Software Engineering Fall 1998 46

Resolving a conflict (continued)

v The text from your working file appears at the top, after
the `<<<' characters; below it is the conflicting text from
the other developer. The revision number `1.9' indicates
that the conflicting change was introduced in version
1.9 of the file, making it easier for you to check the logs,
or examine the entire change with cvs diff.

v Once you've decided how the conflict should be
resolved, remove the markers from the code, and put it
in its proper state.

v Repeat this process for all files with an error message
and all occurrences within them.

Guenter Teubner 15-413 Software Engineering Fall 1998 47

Resolving a conflict

The cvs update command throws a warning
when a merging conflict occurs. You have to
resolve this conflict manually before you can
commit your changes.

The cvs update command throws a warning
when a merging conflict occurs. You have to
resolve this conflict manually before you can
commit your changes.

You can’t commit your changes if your
version of a file is not up-to-date!

You can’t commit your changes if your
version of a file is not up-to-date!

Guenter Teubner 15-413 Software Engineering Fall 1998 48

Resolving a conflict (continued)

These are the conflicting lines of code. The
developer has to select the correct version
and remove the

These are the conflicting lines of code. The
developer has to select the correct version
and remove the

Guenter Teubner 15-413 Software Engineering Fall 1998 49

Committing your changes

v Situation: You have brought your sources up-to-date
with the rest of the group and tested them, so you are
ready to commit your changes to the repository and
make them visible to the rest of the group.

v Command: cvs commit filename

v At this point, CVS will start up your favorite editor and
prompt you for a log message describing the change.
When you exit the editor, CVS will commit your
change, it is now visible to the rest of the group. When
another developer runs cvs update, CVS will merge
your changes to ‘filename’ into their working directory.

Guenter Teubner 15-413 Software Engineering Fall 1998 50

Committing your changes

For each commit, CVS requests an entry for the
log file. The editor specified by the EDITOR
environment variable is used to create these log
file entries. Empty entries are not accepted.

For each commit, CVS requests an entry for the
log file. The editor specified by the EDITOR
environment variable is used to create these log
file entries. Empty entries are not accepted.

Guenter Teubner 15-413 Software Engineering Fall 1998 51

Committing your changes (continued)

After entering the log file comments, all
locally made changes are committed to
the repository. Other developers now have
access to them.

After entering the log file comments, all
locally made changes are committed to
the repository. Other developers now have
access to them.

Guenter Teubner 15-413 Software Engineering Fall 1998 52

Getting some information about a file

v Situation: You might well be curious what changes the
other developers made to a file.

v Command: cvs log filename

v You will see the log for this particular file. You get a list
of all revisions including the name of the developer, the
message describing the changes he/she did, the date
and time of the commit and the differences between the
revisions.

v You can find a description of the diff-format in the CVS
documentation on the homepage of this course!

Guenter Teubner 15-413 Software Engineering Fall 1998 53

Getting some information about a file

The cvs log command displays information
about the revisions of a file including the
name of the author, date and time when he
committed a particular revision and the
comment he specified.

The cvs log command displays information
about the revisions of a file including the
name of the author, date and time when he
committed a particular revision and the
comment he specified.

Guenter Teubner 15-413 Software Engineering Fall 1998 54

Deleting a file from the repository

v Situation: One or more files are not longer being used
and have to be removed from the repository.

v Command: cvs remove filename

v You still have to do a cvs commit after this command
to make the remove(s) actually take affect.

v Note: cvs remove does not actually remove the files
from the repository. It only moves them from the
"current list" to the CVS Attic. When another person
checks out the module in the future they will not get the
files that were removed. But if you ask for older
versions, the file will be checked out of the Attic.

Guenter Teubner 15-413 Software Engineering Fall 1998 55

Deleting a file (example)

To remove a file from the repository,
remove it first from your working
directory. Otherwise you’ll get an
message from CVS. You can then remove
the file from the repository with the
command cvs remove. This becomes
effective after the next cvs commit.

To remove a file from the repository,
remove it first from your working
directory. Otherwise you’ll get an
message from CVS. You can then remove
the file from the repository with the
command cvs remove. This becomes
effective after the next cvs commit.

Guenter Teubner 15-413 Software Engineering Fall 1998 56

CVS Basic Commands (Summary)

cvs diff filenameSee difference of file with original

cvs status filenameSee status of current file

cvs log filenameSee version history for a file

cvs delete filenameDeleting a file from the repository

cvs commit filename

cvs commit

Promote all changes done to a file

Promote all changes in a module

cvs update filename

cvs update

Updating a local file

Update whole module

cvs checkout modulenameGetting a module (file tree)

cvs add filenameAdding a file to the repository

Guenter Teubner 15-413 Software Engineering Fall 1998 57

Security aspects of CVS

v Direct access (through the file system) to the repository
is restricted by using the access control mechanisms of
the Linux file system.

v Web access is restricted by
w using a password protected website

w allowing only read-access to the repository through the web

v Important: Every developer has to protect his private working
directory by establishing appropriate access rights (e.g. read
and write access only for him/her.

Guenter Teubner 15-413 Software Engineering Fall 1998 58

Where to find help on CVS?

v The direct way
w cvs -H

v The unix way
w man cvs

v The comprehensive way
w Read the documentation for CVS. You’ll find a copy on the

webpage of the project.

v Where to start in the web?
w http://www.cyclic.com

w http://konablend.se.cs.cmu.edu/PAID/Misc-
Documents/CVS/HTML/cvs_toc.html

