
Bernd Bruegge        Component Based Software Engineering       1

2

 

TUM

Design Patterns

Bernd Brügge

Technische Universität München

Lehrstuhl für Angewandte Softwaretechnik

18 January 2002



Bernd Bruegge        Component Based Software Engineering       2

Odds and Ends

v Additional Literature references

v Mid-Term exam

v Software testers wanted



Bernd Bruegge        Component Based Software Engineering       3

Additional References

v This lecture:
w E. Gamma, R. Helm, R. Johnson, J. Vlissides

Design Patterns
Addison-Wesley, Reading, MA, 1994.
ISBN 0-201-63361-2

v Previous Lecture (topic data management, mapping class
diagrams into relational databases):
w M. Blaha & W. Premerlani

Object-Oriented Modeling and Design for
Database Applications
Prentice Hall, Upper Saddle River, NJ
ISBN 0-13-123829-9



Bernd Bruegge        Component Based Software Engineering       4

Mid-term Exam results

v Maximum number of points:
120

v Grading Scale
w 1,0 >= 115

w 1,3 >= 110

w 1,7 >= 100

w 2,0 >= 95

w 2,3 >= 90

w 2,7 >= 85

w 3,0 >= 80

w 3,3 >= 75

w 3,7 >= 70

w 4,0 >= 60

w 4,3 <   60

v Performance
w 1 Student    1,3

w 6 Students                    1,7

w 4 Students                    2,3

w 1 Student                      3,0

w 2 Students                    4,0

w 4 Students                    Fail

v Your graded exam can be picked at
Allen Dutoit‘s office (H-1 1207)
w Right after class (from 12:00-13:00pm)

v Sample solutions available under
w http://tramp.globalse.org/doc/presentati

ons/midterm_solutions.pdf

v Allen is available for questions about
the exam
w His office hours Tuesday 13:00 to 14:00



Bernd Bruegge        Component Based Software Engineering       5

Accdenture looks for Software Tester

v For the test phase of the project described by Frank Mang in
his talk yesterday, Accenture looks for students  as system
testers

v Opportunity to get some insight into the activity of IT
consulting.

v Flexible work schedule

v Good payment

v Contact: sabine.freser-specht@accenture.com

v Mobile phone: 0175/ 57-68805



Bernd Bruegge        Component Based Software Engineering       6

Outline of the next two Lectures

v Design Patterns
w Usefulness of design patterns

w Design Pattern Categories

v Patterns covered in this Lecture
w Composite: Model dynamic aggregates

w Facade: Interfacing to subsystems

w Adapter: Interfacing to existing systems  (legacy systems)

w Bridge: Interfacing to existing and future systems

v Patterns covered in the next lecture
w Proxy

w Observer

w Abstract Factory

w Builder



Bernd Bruegge        Component Based Software Engineering       7

Finding Objects

v The hardest problems in object-oriented system development
are:
w Identifying objects

w Decomposing the system into objects

v Requirements Analysis focuses on application domain:
w  Object identification

v System Design addresses both,  application and
implementation domain:
w Subsystem Identification

v Object Design focuses on implementation domain:
w Additional solution objects



Bernd Bruegge        Component Based Software Engineering       8

Techniques for Finding Objects

v Requirements Analysis
w Start with Use Cases. Identify participating objects

w Textual analysis of flow of events (find nouns, verbs, ...)

w Extract  application domain objects by interviewing client
(application domain knowledge)

w Find objects by using general knowledge

v System Design
w Subsystem decomposition

w Try to identify layers and partitions

v Object Design
w Find additional objects by applying implementation domain

knowledge



Bernd Bruegge        Component Based Software Engineering       9

Another Source for Finding Objects : Design Patterns

v Observation [Gamma et al 95]:
w Strict modeling of the real world leads to a system that reflects

today’s realities but not necessarily tomorrow’s.

v There is a need for reusable and flexible designs

v Design knowledge complements application domain
knowledge and implementation domain knowledge.

v What are Design Patterns?
w A  design pattern describes a problem which occurs over and over

again in our environment, and then describes the core of the solution
to that problem, in such a way that you can use the this solution a
million times over, without ever doing it the same twice



Bernd Bruegge        Component Based Software Engineering       10

Design Patterns Notation

v Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides,
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison Wesley, 1995

v Based on OMT Notation (a precursor to UML)

v Notational differences between the notation  used by Gamma
et al. and UML. In Gamma et al:
w Attributes come after the Operations

w Associations are called acquaintances

w Multiplicities are shown as solid circles (*

w Inheritance shown as triangle

w Dashed line :  Instantiation Assocation (Class can instantiate objects
of associated class) (In UML it denotes a dependency)

w UML Note is called Dogear box (connected by dashed line to class
operation): Pseudo-code implementation of operation



Bernd Bruegge        Component Based Software Engineering       11

Review: Modeling Typical Aggregations

University School Department

Organization Chart (variable aggregate):

Dynamic tree (recursive aggregate):

CarFixed Structure:

Doors Wheels Battery Engine

Compound  
Statement

Simple  
Statement

Program

Block

* *

* *

*
*



Bernd Bruegge        Component Based Software Engineering       12

Review: Modeling Typical Aggregations
(in OMT Notation)

University School Department

Organization Chart (variable aggregate):

Dynamic tree (recursive aggregate):

CarFixed Structure:

Doors Wheels Battery Engine

Compound  
Statement

Simple  
Statement

Program

Block



Bernd Bruegge        Component Based Software Engineering       13

Review: Modeling Typical Aggregations

University School Department

Organization Chart (variable aggregate):

CarFixed Structure:

Doors Wheels Battery Engine

Compound  
Statement

Simple  
Statement

Program

Block

Dynamic tree (recursive aggregate):

Composite
Pattern



Bernd Bruegge        Component Based Software Engineering       14

Composite Pattern

v Models tree structures that represent part-whole hierarchies
with arbitrary depth and width.

v The Composite Pattern lets client treat individual objects and
compositions of these  objects uniformly

Client Component

Leaf

Operation()

Composite

Operation()
AddComponent

RemoveComponent()
GetChild()

Children



Bernd Bruegge        Component Based Software Engineering       15

Many Graphic Applications use Composite Patterns

Client Graphic

Circle

Draw()

Picture

Draw()
Add(Graphic g)

RemoveGraphic)
GetChild(int)

Children
Line

Draw()

• The Graphic  Class represents
both primitives (Line, Circle) and
their containers (Picture)



Bernd Bruegge        Component Based Software Engineering       16

Java‘s AWT library can be modeled
with the component pattern

Graphics

Component

Button

TextField

Label

*

TextArea

Text
Component

Container
add(Component c)
paint(Graphics g)

getGraphics()



Bernd Bruegge        Component Based Software Engineering       17

We can also  model aspects of Software  Development
with a Composite Pattern

v Software System:
w Definition: A software system consists of subsystems which are

either other subsystems or collection of classes

w Composite: Subsystem (A software system consists of subsystems
which consists of subsystems , which consists of subsystems,
which...)

w Leaf node: Class

v Software Lifecycle:
w Definition: The software lifecycle consists of a set of development

activities which are either other actitivies or collection of  tasks

w Composite: Activity (The software lifecycle consists of activities
which consist  of  activities, which consist of activities, which....)

w Leaf node:  Task



Bernd Bruegge        Component Based Software Engineering       18

Modeling a Software System with a Composite
Pattern

Software
System

Class

Subsystem Children

*
User



Bernd Bruegge        Component Based Software Engineering       19

Modeling the Software Lifecycle with a Composite
Pattern

Software
Lifecycle

Task

Activity Children

*
Manager



Bernd Bruegge        Component Based Software Engineering       20

More patterns: Façade, Adapter, Bridge

v The ideal structure of a subsystem consists of

w an interface object

w a set of application domain objects (entity objects)
modeling real entities or existing systems

u Some of the application domain objects are interfaces to existing
systems

w one or more  control objects

v We can use design patterns to realize these subsystems

v Realization of the Interface Object: Facade

wProvides the interface to  the subsystem

v Interface to existing systems: Adapter or Bridge

wProvides the interface to  existing system (legacy system)

wThe existing system is not necessarily object-oriented!



Bernd Bruegge        Component Based Software Engineering       21

Facade Pattern

v Provides a unified interface to a set of objects in a subsystem.

v A facade defines a higher-level interface that makes the
subsystem easier to use (i.e. it abstracts out the gory details)

v Facades allow us to provide  a closed architecture



Bernd Bruegge        Component Based Software Engineering       22

Open vs Closed Architecture

v Open architecture:
w Any client can see into the

vehicle subsystem and call on
any component or class operation
at will.

v Why is this good?
w Efficiency

v Why is this bad?
w Can’t expect the caller to

understand how the subsystem
works or the complex
relationships within the
subsystem.

w We can be assured that the
subsystem will be misused,
leading to non-portable code

Vehicle Subsystem

VIP Subsystem

AIM

Card

SA/RT

Seat



Bernd Bruegge        Component Based Software Engineering       23

Realizing a Closed Architecture with a Facade

v The subsystem decides
exactly how it is accessed.

v No need to worry about
misuse by callers

v If a façade is used the
subsystem can be used in an
early integration test
w We need to write only a driver

VIP Subsystem

AIM

Card

SA/RT

Seat

Vehicle  Subsystem API



Bernd Bruegge        Component Based Software Engineering       24

Review of goals and some terms

v Before we go to the next design pattern let’s
review the goal and  some terms



Bernd Bruegge        Component Based Software Engineering       25

Reuse

v Main goal:
w Reuse knowledge from previous experience to current problem

w Reuse functionality already available

v Composition (also called Black Box Reuse)

wNew functionality is obtained by aggregation

wThe new object with more functionality is an aggregation
of existing components

v Inheritance (also called White-box Reuse)

wNew functionality is obtained by inheritance.

v Three ways to get new functionality:
u Implementation inheritance

u Interface inheritance

u Delegation



Bernd Bruegge        Component Based Software Engineering       26

Implementation Inheritance vs Interface Inheritance

v Implementation inheritance
wAlso called class inheritance

wGoal: Extend an applications’ functionality by reusing
functionality in parent class

w Inherit from an existing class with some or all operations
already implemented

v Interface inheritance
wAlso called subtyping

w Inherit from an abstract class with all operations
specified, but not yet implemented



Bernd Bruegge        Component Based Software Engineering       27

Implementation Inheritance

v A very similar class is already implemented that does almost
the same as the desired class implementation.

v  Problem with implementation inheritance:

Some of the inherited operations might exhibit unwanted
behavior. What happens if the Stack user calls Remove()
instead of Pop()?

v Example: I have a List
class, I need a Stack
class. How about
subclassing the  Stack
class from the List class
and providing three
methods, Push() and
Pop(), Top()?

Add ()
Remove()

List

Push ()
Pop()

Stack

Top()

“Already
 implemented”



Bernd Bruegge        Component Based Software Engineering       28

Delegation 1/18/02

v Delegation is a way of making composition (for example
aggregation) as powerful for reuse as inheritance

v In  Delegation two objects are involved in handling a request
w A receiving object delegates operations to its delegate.

w The developer can make sure that the receiving object does not allow
the client to misuse the delegate object

Client Receiver DelegateDelegates to calls



Bernd Bruegge        Component Based Software Engineering       29

Delegation or Inheritance?

v Delegation
w Pro:

u Flexibility: Any object can be replaced at run time by another one (as
long as it has the same type)

w Con:
u Inefficiency: Objects are encapsulated.

v Inheritance
w Pro:

u Straightforward to use

u Supported by many programming languages

u Easy to implement new functionality

w Con:
u Inheritance exposes a subclass to the details of its parent class

u Any change in the parent class implementation forces the subclass to
change (which requires recompilation of both)



Bernd Bruegge        Component Based Software Engineering       30

Delegation instead of Inheritance

v Delegation: Catching an operation and sending it to another
object.

v Which solution is better?

+Add()
+Remove()

List

Stack

+Push()
+Pop()
+Top()

+Push()
+Pop()
+Top()

Stack

Add()
Remove()

List



Bernd Bruegge        Component Based Software Engineering       31

Many design patterns use a
combination of inheritance and

delegation

Many design patterns use a
combination of inheritance and

delegation



Bernd Bruegge        Component Based Software Engineering       32

Adapter Pattern

v “Convert the interface of a class into another interface clients
expect. Adapter lets classes work together that couldn’t
otherwise because of incompatible interfaces

v Used to provide a new interface to existing legacy components
(Interface engineering, reengineering).

v Also known as a wrapper

v Two adapter patterns:
w Class adapter:

u Uses multiple inheritance to adapt one interface to another

w Object adapter:
u Uses single inheritance and delegation

v Object adapters are much more frequent. We will only cover
object adapters (and call them therefore simply adapters)



Bernd Bruegge        Component Based Software Engineering       33

v Delegation is used to
bind an Adapter and an Adaptee

v Interface inheritance is use to specify the interface of the
Adapter class.

v Target and Adaptee (usually called legacy system) pre-exist
the Adapter.

v Target may be realized as an interface in Java.

Adapter pattern

Client
Target

Request()

Adaptee

ExistingRequest()

Adapter

Request()

adaptee



Bernd Bruegge        Component Based Software Engineering       34

Bridge Pattern

v Use a bridge to “decouple an abstraction from its
implementation so that the two can vary
independently”. (From [Gamma et al 1995])

v Also know as a Handle/Body pattern.

v Allows different implementations of an interface to
be decided upon dynamically.



Bernd Bruegge        Component Based Software Engineering       35

Using a Bridge

v The bridge pattern is used to provide multiple
implementations under the same interface.

v Examples: Interface to a component that is incomplete, not yet
known or unavailable during testing

v JAMES Project (WS 97-98): if seat data is required to be read,
but the seat is not yet implemented, not yet known or only
available by a simulation, provide a bridge:

VIP

Seat 
(in Vehicle Subsystem) SeatImplementation

Stub Code SARTSeatAIMSeat

imp

GetPosition()
SetPosition()



Bernd Bruegge        Component Based Software Engineering       36

JAMES Bridge Example Implementation in Java

public interface SeatImplementation {
  public int GetPosition();
  public void SetPosition(int newPosition);
}
public class Stubcode implements SeatImplementation {
  public int GetPosition() {
    // stub code for GetPosition
  }
  ...
}
public class AimSeat implements SeatImplementation {
  public int GetPosition() {
    // actual call to the AIM simulation system
  }
  ….
}
public class SARTSeat implements SeatImplementation {
  public int GetPosition() {
    // actual call to the SART seat simulator
 }
  ...
}



Bernd Bruegge        Component Based Software Engineering       37

Bridge Pattern(151)

Abstraction

Operation()

imp

Client

Imp->OperationImp();

Concrete Implementor B

OperationImpl()

Refined Abstraction 2

Operation()

Refined Abstraction 1

Operation()

Concrete Implementor A

OperationImpl()

Implementor

OperationImpl()



Bernd Bruegge        Component Based Software Engineering       38

Adapter vs Bridge

v Similarities:

wBoth used to hide the details of the underlying
implementation.

v Difference:

wThe adapter pattern is geared towards making unrelated
components work together

u Applied to systems after they’re designed (reengineering,
interface engineering).

wA bridge, on the other hand, is used up-front in a design
to let abstractions and implementations vary
independently.

u Green field engineering of an “extensible system”

u New “beasts” can be added to the “object zoo”, even if these are
not known at analysis or system design time.



Bernd Bruegge        Component Based Software Engineering       39

Design Patterns encourage good Design Practice

v A facade pattern should be used by all subsystems in a
software system. The façade defines all the services of the
subsystem.
w The facade will delegate requests to the appropriate components

within the subsystem.

v Adapters should be used to interface to any existing
proprietary components.
w For example, a smart card software system should provide an adapter

for a particular smart card reader  and other hardware that it controls
and queries.

v Bridges should be used to interface to a set of  objects  where
the full set is not completely known at analysis or design time.
w Bridges should be used when the subsystem must be extended later

(extensibility).



Bernd Bruegge        Component Based Software Engineering       40

Additional Design Heuristics

v Never use implementation inheritance, always use interface
inheritance

v A subclass should never hide operations implemented  in a
superclass

v If you are tempted to use implementation inheritance, use
delegation instead



Bernd Bruegge        Component Based Software Engineering       41

Summary

v Composite Pattern:
w Models trees with dynamic width  and dynamic depth

v Facade Pattern:
w Interface to a Subsystem

w Closed vs Open Architecture

v Adapter Pattern:
w Interface to Reality

v Bridge Pattern:
w Interface Reality and Future

v Read Design Patterns Book
w Learn how to use it as a reference book



Bernd Bruegge        Component Based Software Engineering       42

Other Design Patterns

v Creational Patterns
w Abstract Factory Pattern (“Device Independence”)

v Structural Patterns
w Proxy (“Location Transparency”)

v Behavioral Patterns
w Command (“Request Encapsulation”, “unlimited undos”)

w Observer  (“Publish and Subscribe”)

w Strategy (“Policy vs Mechanism”, “Encapsulate family of
algorithms”)


